SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "hsv:(MEDICIN OCH HÄLSOVETENSKAP) hsv:(Klinisk medicin) ;srt2:(1990-1999);srt2:(1991);pers:(Zhang H)"

Sökning: hsv:(MEDICIN OCH HÄLSOVETENSKAP) hsv:(Klinisk medicin) > (1990-1999) > (1991) > Zhang H

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Agardh, Carl-David, et al. (författare)
  • Free radical production and ischemic brain damage: influence of postischemic oxygen tension
  • 1991
  • Ingår i: International Journal of Developmental Neuroscience. - : Wiley. - 1873-474X .- 0736-5748. ; 9:2, s. 127-138
  • Tidskriftsartikel (refereegranskat)abstract
    • It is now becoming increasingly clear that free radicals contribute to brain damage in several conditions, such as hyperoxia and trauma. It has been more difficult to prove that free radical production mediates ischemic brain damage, but it has often been suggested that it may be a major contributor to reperfusion damage, observed following transient ischemia. Recent results demonstrate that cerebral ischemia of long duration, particularly when followed by reperfusion, leads to enhanced production of partially reduced oxygen species, notably hydrogen peroxide (H2O2). It has also been suggested that postischemic hyperoxia, e.g. an increased oxygen tension during the recirculation period, adversely affects recovery following transient ischemia. Other data support the notion that brain damage caused by permanent ischemia (stroke) is significantly influenced by production of free radicals. The present study, however, fails to show that recirculation following brief periods of ischemia (15 min) leads to an enhanced H2O2 production, and that hyperoxia aggravates the ischemic damage. This study was undertaken to reveal whether variations in oxygen supply in the postischemic period following forebrain ischemia in rats affect free radical production and the brain damage incurred. To that end, rats ventilated on N2O/O2 (70:30) were subjected to 15 min of transient ischemia. Normoxic animals were ventilated with the N2O/O2 mixture, hyperoxic animals with 100% O2, and hypoxic ones with about 10% O2 (balance either N2O/N2 or N2) during the recirculation. At the end of this period, the animals were decapitated for assessment of H2O2 production with the aminotriazole/catalase method. This method is based on the notion that aminotriazole interacts with H2O2 to inactivate catalase; thus, the rate of inactivation of catalase in aminotriazole treated animals reflects H2O2 production. In a parallel series, animals ventilated with one of the three gas mixtures in the early recirculation period, respectively, were allowed to recover for 7 days, with subsequent perfusion-fixation of brain tissues and light microscopical evaluation of the brain damage. Animals given aminotriazole, whether rendered ischemic or not, showed a reduced tissue catalase activity, reflecting H2O2 production in the brain. Hyperoxic animals failed to show increased tissue H2O2 production, while hypoxic ones showed a tendency towards decreased production. However, all three groups (hypo, normo- and hyperoxic) had similar density and distribution of neuronal damage. These results suggest that although postischemic oxygen tensions may determine the rates of H2O2 production, variations in oxygen tensions do not influence the final brain damage incurred. In conclusion, there was thus no indication that variations in the postischemic oxygen supply altered production of free radicals, or modulated the damage incurred as a result of the ischemia. We conclude that free radical production may not be an important factor in the pathogenesis of brain damage following brief periods of ischemia, but may represent an important modulator following longer periods of ischemia, when a vascular component becomes an important factor in the pathological events.
  •  
2.
  • Lundgren, Johan, et al. (författare)
  • Acidosis-induced ischemic brain damage: are free radicals involved?
  • 1991
  • Ingår i: Journal of Cerebral Blood Flow and Metabolism. - 1559-7016. ; 11:4, s. 587-596
  • Tidskriftsartikel (refereegranskat)abstract
    • Substantial evidence exists that reactive oxygen species participate in the pathogenesis of brain damage following both sustained and transient cerebral ischemia, adversely affecting the vascular endothelium and contributing to the formation of edema. One likely triggering event for free radical damage is delocalization of protein-bound iron. The binding capacity for some iron-binding proteins is highly pH sensitive and, consequently, the release of iron is enhanced by acidosis. In this study, we explored whether enhanced acidosis during ischemia triggers the production of reactive oxygen species. To that end, enhanced acidosis was produced by inducing ischemia in hyperglycemic rats, with normoglycemic ones serving as controls. Production of H2O2, estimated from the decrease in catalase activity after 3-amino-1,2,4-triazole (AT) administration, was measured in the cerebral cortex, caudoputamen, hippocampus, and substantia nigra (SN) after 15 min of ischemia followed by 5, 15, and 45 min of recovery, respectively (in substantia nigra after 45 min of recovery only). Free iron in cerebrospinal fluid (CSF) was measured after ischemia and 45 min of recovery. Levels of total glutathione (GSH + GSSH) in cortex and hippocampus, and levels of alpha-tocopherol in cortex, were also measured after 15 min of ischemia followed by 5, 15, and 45 min of recovery. The results confirm previous findings that brief ischemia in normoglycemic animals does not measurably increase H2O2 production in AT-injected animals. Ischemia under hyperglycemic conditions likewise failed to induce increased H2O2 production. No difference in free iron in CSF was observed between animals subjected to ischemia under hyper- and normoglycemic conditions. The moderate decrease in total glutathione or alpha-tocopherol levels did not differ between normo- and hyperglycemic animals in any brain region or at any recovery time. Thus, the results failed to give positive evidence for free radical damage following brief periods of ischemia complicated by excessive acidosis. However, it is possible that free radical production is localized to a small subcellular compartment within the tissue, thereby escaping detection. Also, the results do not exclude the possibility that free radicals are pathogenetically important after ischemia of longer duration.
  •  
3.
  • Zhang, H, et al. (författare)
  • Hydrogen peroxide production in ischaemic retina: influence of hyperglycaemia and postischaemic oxygen tension
  • 1991
  • Ingår i: Diabetes Research. - 0265-5985. ; 16:1, s. 29-35
  • Tidskriftsartikel (refereegranskat)abstract
    • Free radicals have recently been proposed to play a role in the development of diabetic retinopathy. Ischaemia and hyperglycaemia followed by recirculation have been suggested to initiate free radical production in other tissues and the aim of the present study was to examine whether this could also be the case in the retina. The present study showed retinal cell damage, as measured by pycnotic cells, to be more pronounced when ischaemia was combined with hyperglycaemia than when combined with normoglycaemia. As an indication of free radical production, catalase activity was measured, reflecting the production of hydrogen peroxide (H2O2). Small amounts of H2O2 were found to be generated in the normal retina, but did not increase during ischaemia and hyperglycaemia followed by recirculation. It thus seems, as if hyperglycaemia aggravates the harmful effects of ischaemia, but with the methods used, there does not seem to be any increase in free radical production (as measured by H2O2 production) in normal rat retina during ischaemic and hyperglycaemic conditions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3
Typ av publikation
tidskriftsartikel (3)
Typ av innehåll
refereegranskat (3)
Författare/redaktör
Zhang, H. (3)
Agardh, Carl-David (3)
Siesjö, Bo (2)
Smith, Maj-Lis (2)
Agardh, Elisabet (1)
Lundgren, Johan (1)
visa fler...
Halliwell, B (1)
Evans, P J (1)
visa färre...
Lärosäte
Lunds universitet (3)
Språk
Engelska (3)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (3)
År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy