SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "hsv:(MEDICIN OCH HÄLSOVETENSKAP) hsv:(Klinisk medicin) hsv:(Endokrinologi och diabetes) ;pers:(Wierup Nils)"

Sökning: hsv:(MEDICIN OCH HÄLSOVETENSKAP) hsv:(Klinisk medicin) hsv:(Endokrinologi och diabetes) > Wierup Nils

  • Resultat 1-10 av 77
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Nagorny, Cecilia, et al. (författare)
  • Distribution of melatonin receptors in murine pancreatic islets.
  • 2011
  • Ingår i: Journal of Pineal Research. - 1600-079X. ; 50, s. 412-417
  • Tidskriftsartikel (refereegranskat)abstract
    • Melatonin has multiple receptor-dependent and receptor-independent functions. At the cell membrane, melatonin interacts with its receptors MT1 and MT2, which are expressed in numerous tissues. Genome-wide association studies have recently shown that the MTNR1B/MT2 receptor may be involved in the pathogenesis of type 2 diabetes mellitus. In line with these findings, expression of melatonin receptors has been shown in mouse, rat, and human pancreatic islets. MT1 and MT2 are G-protein-coupled receptors and are proposed to exert inhibitory effects on insulin secretion. Here, we show by immunocytochemistry that these membrane melatonin receptors have distinct locations in the mouse islet. MT1 is expressed in α-cells while MT2 is located to the β-cells. These findings help to unravel the complex machinery underlying melatonin's role in the regulation of islet function.
  •  
2.
  • Axelsson, Annika S., et al. (författare)
  • Sulforaphane reduces hepatic glucose production and improves glucose control in patients with type 2 diabetes
  • 2017
  • Ingår i: Science Translational Medicine. - : American Association for the Advancement of Science (AAAS). - 1946-6234 .- 1946-6242. ; 9:394
  • Tidskriftsartikel (refereegranskat)abstract
    • A potentially useful approach for drug discovery is to connect gene expression profiles of disease-affected tissues ("disease signatures") to drug signatures, but it remains to be shown whether it can be used to identify clinically relevant treatment options. We analyzed coexpression networks and genetic data to identify a disease signature for type 2 diabetes in liver tissue. By interrogating a library of 3800 drug signatures, we identified sulforaphane as a compound that may reverse the disease signature. Sulforaphane suppressed glucose production from hepatic cells by nuclear translocation of nuclear factor erythroid 2-related factor 2 (NRF2) and decreased expression of key enzymes in gluconeogenesis. Moreover, sulforaphane reversed the disease signature in the livers from diabetic animals and attenuated exaggerated glucose production and glucose intolerance by a magnitude similar to that of metformin. Finally, sulforaphane, provided as concentrated broccoli sprout extract, reduced fasting blood glucose and glycated hemoglobin (HbA1c) in obese patients with dysregulated type 2 diabetes.
  •  
3.
  • Asad, Samina, et al. (författare)
  • HTR1A a Novel Type 1 Diabetes Susceptibility Gene on Chromosome 5p13-q13
  • 2012
  • Ingår i: PLOS ONE. - : Public Library of Science. - 1932-6203. ; 7:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: We have previously performed a genome-wide linkage study in Scandinavian Type 1 diabetes (T1D) families. In the Swedish families, we detected suggestive linkage (LOD less than= 2.2) to the chromosome 5p13-q13 region. The aim of our study was to investigate the linked region in search for possible T1D susceptibility genes. Methodology/Principal Findings: Microsatellites were genotyped in the Scandinavian families to fine-map the previously linked region. Further, SNPs were genotyped in Swedish and Danish families as well as Swedish sporadic cases. In the Swedish families we detected genome-wide significant linkage to the 5-hydroxytryptamine receptor 1A (HTR1A) gene (LOD 3.98, pless than9.8x10(-6)). Markers tagging two separate genes; the ring finger protein 180 (RNF180) and HTR1A showed association to T1D in the Swedish and Danish families (pless than0.002, pless than0.001 respectively). The association was not confirmed in sporadic cases. Conditional analysis indicates that the primary association was to HTR1A. Quantitative PCR show that transcripts of both HTR1A and RNF180 are present in human islets of Langerhans. Moreover, immunohistochemical analysis confirmed the presence of the 5-HTR1A protein in isolated human islets of Langerhans as well as in sections of human pancreas. Conclusions: We have identified and confirmed the association of both HTR1A and RFN180, two genes in high linkage disequilibrium (LD) to T1D in two separate family materials. As both HTR1A and RFN180 were expressed at the mRNA level and HTR1A as protein in human islets of Langerhans, we suggest that HTR1A may affect T1D susceptibility by modulating the initial autoimmune attack or either islet regeneration, insulin release, or both.
  •  
4.
  • Lindqvist, Andreas, et al. (författare)
  • The impact of Roux-en-Y gastric bypass surgery on normal metabolism in a porcine model
  • 2017
  • Ingår i: Plos One. - : Public Library of Science (PLoS). - 1932-6203. ; 12:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Background A growing body of literature on Roux-en-Y gastric bypass surgery (RYGB) has generated inconclusive results on the mechanism underlying the beneficial effects on weight loss and glycaemia, partially due to the problems of designing clinical studies with the appropriate controls. Moreover, RYGB is only performed in obese individuals, in whom metabolism is perturbed and not completely understood. In an attempt to isolate the effects of RYGB and its effects on normal metabolism, we investigated the effect of RYGB in lean pigs, using sham-operated pair-fed pigs as controls. Two weeks post-surgery, pigs were subjected to an intravenous glucose tolerance test (IVGTT) and circulating metabolites, hormones and lipids measured. Bile acid composition was profiled after extraction from blood, faeces and the gallbladder. A similar weight development in both groups of pigs validated our experimental model. Despite similar changes in fasting insulin, RYGB-pigs had lower fasting glucose levels. During an IVGTT RYGB-pigs had higher insulin and lower glucose levels. VLDL and IDL were lower in RYGB-than in sham-pigs. RYGB-pigs had increased levels of most amino acids, including branched-chain amino acids, but these were more efficiently suppressed by glucose. Levels of bile acids in the gallbladder were higher, whereas plasma and faecal bile acid levels were lower in RYGB-than in sham-pigs. In a lean model RYGB caused lower plasma lipid and bile acid levels, which were compensated for by increased plasma amino acids, suggesting a switch from lipid to protein metabolism during fasting in the immediate postoperative period.
  •  
5.
  • Landerholm, Kalle, et al. (författare)
  • Cocaine- and Amphetamine-Regulated Transcript in Neuroendocrine Tumors
  • 2011
  • Ingår i: Neuroendocrinology. - : S. Karger AG. - 0028-3835 .- 1423-0194. ; 94:3, s. 228-236
  • Tidskriftsartikel (refereegranskat)abstract
    • Background/Aims: Cocaine-and amphetamine-regulated transcript (CART) is an anorexigenic regulatory peptide highly expressed in the brain's appetite control centers, but also in peripheral neurons and in endocrine cells in the adrenal medulla, thyroid, pancreatic islets, and in the gastrointestinal tract. Plasma levels of CART were recently shown to be elevated in patients with neuroendocrine tumors (NETs), but the cellular sources of CART in NETs have remained unknown. The aim of the study was to establish whether CART is expressed in various types of NETs and, if so, to examine the frequency, distribution and phenotype of CART-expressing cells. Methods: Tumor specimens from 133 NETs originating in the stomach, ileum, rectum, pancreas and thyroid were examined with immunohistochemistry and in situ hybridization. The expression of CART was quantified and the CART-expressing cells were phenotyped by double staining for established markers and hormones. Results: CART-expressing tumor cells were found in the majority of the examined NETs. The expression pattern of CART was highly heterogeneous not only between tumors, but also within individual tumors. In 14% of the NETs, CART was found in a major population of the tumor cells. Conclusion: CART is produced in the majority of NETs, regardless of tumor origin. This likely explains the elevated levels of circulating CART in certain NETs patients, as recently described. CART could therefore prove to be a useful tool in the diagnostics of NETs not only in blood samples, but also in histopathological specimens. Copyright (C) 2011 S. Karger AG, Basel
  •  
6.
  • Abels, Mia, et al. (författare)
  • CART is overexpressed in human type 2 diabetic islets and inhibits glucagon secretion and increases insulin secretion
  • 2016
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 59:9, s. 1928-1937
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis Insufficient insulin release and hyperglucagonaemia are culprits in type 2 diabetes. Cocaine- and amphetamine-regulated transcript (CART, encoded by Cartpt) affects islet hormone secretion and beta cell survival in vitro in rats, and Cart(-/-) mice have diminished insulin secretion. We aimed to test if CART is differentially regulated in human type 2 diabetic islets and if CART affects insulin and glucagon secretion in vitro in humans and in vivo in mice. Methods CART expression was assessed in human type 2 diabetic and non-diabetic control pancreases and rodent models of diabetes. Insulin and glucagon secretion was examined in isolated islets and in vivo in mice. Ca2+ oscillation patterns and exocytosis were studied in mouse islets. Results We report an important role of CART in human islet function and glucose homeostasis in mice. CART was found to be expressed in human alpha and beta cells and in a subpopulation of mouse beta cells. Notably, CART expression was several fold higher in islets of type 2 diabetic humans and rodents. CART increased insulin secretion in vivo in mice and in human and mouse islets. Furthermore, CART increased beta cell exocytosis, altered the glucose-induced Ca2+ signalling pattern in mouse islets from fast to slow oscillations and improved synchronisation of the oscillations between different islet regions. Finally, CART reduced glucagon secretion in human and mouse islets, as well as in vivo in mice via diminished alpha cell exocytosis. Conclusions/interpretation We conclude that CART is a regulator of glucose homeostasis and could play an important role in the pathophysiology of type 2 diabetes. Based on the ability of CART to increase insulin secretion and reduce glucagon secretion, CART-based agents could be a therapeutic modality in type 2 diabetes.
  •  
7.
  • Abels, Mia, et al. (författare)
  • Overexpressed beta cell CART increases insulin secretion in mouse models of insulin resistance and diabetes
  • 2022
  • Ingår i: Peptides. - : Elsevier BV. - 0196-9781. ; 151
  • Tidskriftsartikel (refereegranskat)abstract
    • Impaired beta cell function and beta cell death are key features of type 2 diabetes (T2D). Cocaine- and amphetamine-regulated transcript (CART) is necessary for normal islet function in mice. CART increases glucose-stimulated insulin secretion in vivo in mice and in vitro in human islets and CART protects beta cells against glucotoxicity-induced cell death in vitro in rats. Furthermore, beta cell CART is upregulated in T2D patients and in diabetic rodent models as a consequence of hyperglycaemia. The aim of this study was to assess the impact of upregulated beta cell CART on islet hormone secretion and glucose homeostasis in a transgenic mouse model. To this end, mice with beta cell-specific overexpression of CART (CARTtg mice) were generated. CARTtg mice challenged by aging, high fat diet feeding or streptozotocin treatment were phenotyped with respect to in vivo and in vitro insulin and glucagon secretion, glucose homeostasis, and beta cell mass. In addition, the impact of adenoviral overexpression of CART on insulin secretion was studied in INS-1 832/13 cells. CARTtg mice had a normal metabolic phenotype under basal conditions. On the other hand, with age CARTtg mice displayed increased insulin secretion and improved glucose elimination, compared with age-matched WT mice. Furthermore, compared with WT controls, CARTtg mice had increased insulin secretion after feeding a high fat diet, as well as lower glucose levels and higher insulin secretion after streptozotocin treatment. Viral overexpression of CART in INS-1 832/13 cells resulted in increased glucose-stimulated insulin secretion. Together, these results imply that beta cell CART acts to increase insulin secretion when beta cell function is challenged. We propose that the increase in beta cell CART is part of a compensatory mechanisms trying to counteract the hyperglycaemia in T2D.
  •  
8.
  • Ahlqvist, Emma, et al. (författare)
  • A link between GIP and osteopontin in adipose tissue and insulin resistance.
  • 2013
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 62:6, s. 2088-2094
  • Tidskriftsartikel (refereegranskat)abstract
    • Low grade inflammation in obesity is associated with accumulation of the macrophagederived cytokine osteopontin in adipose tissue and induction of local as well as systemic insulin resistance. Since GIP (glucose-dependent insulinotropic polypeptide) is a strong stimulator of adipogenesis and may play a role in the development of obesity, we explored whether GIP directly would stimulate osteopontin (OPN) expression in adipose tissue and thereby induce insulin resistance. GIP stimulated OPN protein expression in a dose-dependent fashion in rat primary adipocytes. The level of OPN mRNA was higher in adipose tissue of obese individuals (0.13±}0.04 vs 0.04±}0.01, P<0.05) and correlated inversely with measures of insulin sensitivity (r=-0.24, P=0.001). A common variant of the GIP receptor (GIPR) (rs10423928) gene was associated with lower amount of the exon 9 containing isoform required for transmembrane activity. Carriers of the A-allele with a reduced receptor function showed lower adipose tissue OPN mRNA levels and better insulin sensitivity. Together, these data suggest a role for GIP not only as an incretin hormone, but also as a trigger of inflammation and insulin resistance in adipose tissue. Carriers of GIPR rs10423928 A-allele showed protective properties via reduced GIP effects. Identification of this unprecedented link between GIP and OPN in adipose tissue might open new avenues for therapeutic interventions.
  •  
9.
  • Ahrén, Bo, et al. (författare)
  • Neuropeptides and the regulation of islet function.
  • 2006
  • Ingår i: Diabetes. - 1939-327X. ; 55:Suppl 2, s. 98-107
  • Tidskriftsartikel (refereegranskat)abstract
    • The pancreatic islets are richly innervated by autonomic nerves. The islet parasympathetic nerves emanate from intrapancreatic ganglia, which are controlled by preganglionic vagal nerves. The islet sympathetic nerves are postganglionic with the nerve cell bodies located in ganglia outside the pancreas. The sensory nerves originate from dorsal root ganglia near the spinal cord. Inside the islets, nerve terminals run close to the endocrine cells. In addition to the classic neurotransmitters acetylcholine and norepinephrine, several neuropeptides exist in the islet nerve terminals. These neuropeptides are vasoactive intestinal polypeptide, pituitary adenylate cyclase-activating polypeptide, gastrin-releasing polypeptide, and cocaine-and amphetamine-regulated transcript in parasympathetic nerves; neuropeptide Y and galanin in the sympathetic nerves; and calcitonin gene-related polypeptide in sensory nerves. Activation of the parasympathetic nerves and administration of their neurotransmitters stimulate insulin and glucagon secretion, whereas activation of the sympathetic nerves and administration of their neurotransmitters inhibit insulin but stimulate glucagon secretion. The autonomic nerves contribute to the cephalic phase of insulin secretion, to glucagon secretion during hypoglycemia, to pancreatic polypeptide secretion, and to the inhibition of insulin secretion, which is seen during stress. In rodent models of diabetes, the number of islet autonomic nerves is upregulated. This review focuses on neural regulation of islet function, with emphasis on the neuropeptides.
  •  
10.
  • Ahren, Jonatan, et al. (författare)
  • Increased beta-cell volume in mice fed a high-fat diet A dynamic study over 12 months
  • 2010
  • Ingår i: Islets. - : Informa UK Limited. - 1938-2022 .- 1938-2014. ; 2:6, s. 353-356
  • Tidskriftsartikel (refereegranskat)abstract
    • As we previously demonstrated, there is an adaptive increase in insulin secretion in insulin resistance in the model of high-fat fed female mice. Since it is assumed that islets also adapt to insulin resistance with beta-cell expansion, we have now examined beta-cell volume in this experimental model. Female C57BL/6JBomTac mice were therefore fed a high-fat diet (60% fat from lard) for three, six or twelve months and beta-cell volume was estimated as beta-cell area per islet, individual beta-cell size and beta-cell number per islet. Control animals were fed a normal chow (11% fat). We found that beta-cell area per islet and total number of beta-cells per islet were increased already after three months of high-fat feeding and that this increase was sustained throughout the twelve month study period. In contrast, individual beta-cell size showed a dynamic pattern with a reduction after three months followed by increase after six and twelve months. The number of apoptosis (caspase-3) positive beta-cells was reduced after three months, whereas there was no difference in proliferation (Ki-67) positive cells, although these were generally rarely observed. Thus, we conclude that insulin resistance accompanying high-fat feeding in mice is followed by progressive beta-cell expansion as evident by early increased islet beta-cell volume and total number of beta-cells, whereas individual beta-cell size showed a dynamic response. The model is also associated with an early reduced apoptosis, which may contribute to the increased beta-cell volume.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 77
Typ av publikation
tidskriftsartikel (64)
konferensbidrag (8)
forskningsöversikt (4)
annan publikation (1)
Typ av innehåll
refereegranskat (74)
övrigt vetenskapligt/konstnärligt (3)
Författare/redaktör
Lindqvist, Andreas (23)
Groop, Leif (21)
Sundler, Frank (19)
Fex, Malin (17)
Mulder, Hindrik (16)
visa fler...
Bennet, Hedvig (10)
Dekker-Nitert, Marlo ... (9)
Ahren, Bo (8)
Ahlqvist, Emma (8)
Hansson, Ola (8)
Eliasson, Lena (8)
Tuomi, Tiinamaija (7)
Abels, Mia (7)
Shcherbina, Liliya (7)
Spégel, Peter (6)
Almgren, Peter (6)
Lyssenko, Valeriya (5)
Riva, Matteo (5)
Fadista, Joao (5)
Sathanoori, Ramasri (5)
Lernmark, Åke (5)
Ling, Charlotte (5)
Isomaa, Bo (5)
Nilsson, Peter (4)
Renström, Erik (4)
Degerman, Eva (4)
Taneera, Jalal (4)
Kuusisto, Johanna (4)
Laakso, Markku (4)
Mari, Andrea (4)
Krus, Ulrika (4)
Ottosson Laakso, Emi ... (4)
Holm, Cecilia (4)
Artner, Isabella (4)
Hedenbro, Jan (4)
Kauhanen, Saila (4)
Sörhede-Winzell, Mar ... (3)
Wollheim, Claes B. (3)
Pierzynowski, Stefan (3)
Osmark, Peter (3)
Stancáková, Alena (3)
Jonsson, Anna (3)
Vaag, Allan (3)
Storm, Petter (3)
Holst, Jens J (3)
Asplund, Olof (3)
Prasad, Rashmi (3)
Marchetti, Piero (3)
Edlund, Anna (3)
visa färre...
Lärosäte
Lunds universitet (76)
Uppsala universitet (10)
Karolinska Institutet (7)
Göteborgs universitet (3)
Umeå universitet (2)
Linköpings universitet (2)
visa fler...
Luleå tekniska universitet (1)
Mittuniversitetet (1)
visa färre...
Språk
Engelska (77)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (77)
Naturvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy