SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "hsv:(MEDICIN OCH HÄLSOVETENSKAP) hsv:(Klinisk medicin) hsv:(Radiologi och bildbehandling) ;pers:(Ståhlberg Freddy)"

Sökning: hsv:(MEDICIN OCH HÄLSOVETENSKAP) hsv:(Klinisk medicin) hsv:(Radiologi och bildbehandling) > Ståhlberg Freddy

  • Resultat 1-10 av 116
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Björkman-Burtscher, Isabella, et al. (författare)
  • Proton MR spectroscopy and preoperative diagnostic accuracy: an evaluation of intracranial mass lesions characterized by stereotactic biopsy findings
  • 2000
  • Ingår i: AJNR. - 1936-959X. ; 21:1, s. 84-93
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND AND PURPOSE: MR imaging has made it easier to distinguish among the different types of intracranial mass lesions. Nevertheless, it is sometimes impossible to base a diagnosis solely on clinical and neuroradiologic findings, and, in these cases, biopsy must be performed. The purpose of this study was to evaluate the hypothesis that proton MR spectroscopy is able to improve preoperative diagnostic accuracy in cases of intracranial tumors and may therefore obviate stereotactic biopsy. METHODS: Twenty-six patients with intracranial tumors underwent MR imaging, proton MR spectroscopy, and stereotactic biopsy. MR spectroscopic findings were evaluated for the distribution pattern of pathologic spectra (NAA/Cho ratio < 1) across the lesion and neighboring tissue, for signal ratios in different tumor types, and for their potential to improve preoperative diagnostic accuracy. RESULTS: Gliomas and lymphomas showed pathologic spectra outside the area of contrast enhancement while four nonastrocytic circumscribed tumors (meningioma, pineocytoma, metastasis, and germinoma) showed no pathologic spectra outside the region of enhancement. No significant correlation was found between different tumor types and signal ratios. MR spectroscopy improved diagnostic accuracy by differentiating infiltrative from circumscribed tumors; however, diagnostic accuracy was not improved in terms of differentiating the types of infiltrative or circumscribed lesions. CONCLUSION: MR spectroscopy can improve diagnostic accuracy by differentiating circumscribed brain lesions from histologically infiltrating processes, which may be difficult or impossible solely on the basis of clinical or neuroradiologic findings.
  •  
2.
  • Larsson, Elna-Marie, et al. (författare)
  • MR-undersökning av hjärnan vid 3 tesla. Högre magnetfältsstyrka ger bättre morfologisk och funktionell bild
  • 2005
  • Ingår i: Läkartidningen. - 0023-7205. ; 102:7, s. 3-460
  • Tidskriftsartikel (refereegranskat)abstract
    • 3T MRI offers improved morphological and functional studies of the brain compared with the more commonly used field strength 1.5T. Clinical 3T MRI of the brain is beneficial for high resolution morphological imaging, MR angiography, diffusion-MRI including diffusion tensor imaging, perfusion-MRI, functional MRI (fMRI), and MR spectroscopy. The performance is enhanced by the combination with powerful magnetic field gradients.
  •  
3.
  • Carlsson, Marcus, et al. (författare)
  • Cardiac output and cardiac index measured with cardiovascular magnetic resonance in healthy subjects, elite athletes and patients with congestive heart failure
  • 2012
  • Ingår i: Journal of Cardiovascular Magnetic Resonance. - 1097-6647. ; 14
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Cardiovascular Magnetic Resonance (CMR) enables non-invasive quantification of cardiac output (CO) and thereby cardiac index (CI, CO indexed to body surface area). The aim of this study was to establish if CI decreases with age and compare the values to CI for athletes and for patients with congestive heart failure (CHF). Methods: CI was measured in 144 healthy volunteers (39 +/- 16 years, range 21-81 years, 68 females), in 60 athletes (29 +/- 6 years, 30 females) and in 157 CHF patients with ejection fraction (EF) below 40% (60 +/- 13 years, 33 females). CI was calculated using aortic flow by velocity-encoded CMR and is presented as mean +/- SD. Flow was validated in vitro using a flow phantom and in 25 subjects with aorta and pulmonary flow measurements. Results: There was a slight decrease of CI with age in healthy subjects (8 ml/min/m(2) per year, r(2) = 0.07, p = 0.001). CI in males (3.2 +/- 0.5 l/min/m(2)) and females (3.1 +/- 0.4 l/min/m(2)) did not differ (p = 0.64). The mean +/- SD of CI in healthy subjects in the age range of 20-29 was 3.3 +/- 0.4 l/min/m(2), in 30-39 years 3.3 +/- 0.5 l/min/m(2), in 40-49 years 3.1 +/- 0.5 l/min/m(2), 50-59 years 3.0 +/- 0.4 l/min/m(2) and >60 years 3.0 +/- 0.4 l/min/m(2). There was no difference in CI between athletes and age-controlled healthy subjects but HR was lower and indexed SV higher in athletes. CI in CHF patients (2.3 +/- 0.6 l/min/m(2)) was lower compared to the healthy population (p < 0.001). There was a weak correlation between CI and EF in CHF patients (r(2) = 0.07, p < 0.001) but CI did not differ between patients with NYHA-classes I-II compared to III-IV (n = 97, p = 0.16) or patients with or without hospitalization in the previous year (n = 100, p = 0.72). In vitro phantom validation showed low bias (-0.8 +/- 19.8 ml/s) and in vivo validation in 25 subjects also showed low bias (0.26 +/- 0.61 l/min, QP/QS 1.04 +/- 0.09) between pulmonary and aortic flow. Conclusions: CI decreases in healthy subjects with age but does not differ between males and females. We found no difference in CI between athletes and healthy subjects at rest but CI was lower in patients with congestive heart failure. The presented values can be used as reference values for flow velocity mapping CMR.
  •  
4.
  • Carlsson, Marcus, et al. (författare)
  • Quantification and visualization of cardiovascular 4D velocity mapping accelerated with parallel imaging or k-t BLAST: head to head comparison and validation at 1.5 T and 3 T
  • 2011
  • Ingår i: Journal of Cardiovascular Magnetic Resonance. - 1097-6647. ; 13:55
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Three-dimensional time-resolved (4D) phase-contrast (PC) CMR can visualize and quantify cardiovascular flow but is hampered by long acquisition times. Acceleration with SENSE or k-t BLAST are two possibilities but results on validation are lacking, especially at 3 T. The aim of this study was therefore to validate quantitative in vivo cardiac 4D-acquisitions accelerated with parallel imaging and k-t BLAST at 1.5 T and 3 T with 2D-flow as the reference and to investigate if field strengths and type of acceleration have major effects on intracardiac flow visualization. Methods: The local ethical committee approved the study. 13 healthy volunteers were scanned at both 1.5 T and 3 T in random order with 2D-flow of the aorta and main pulmonary artery and two 4D-flow sequences of the heart accelerated with SENSE and k-t BLAST respectively. 2D-image planes were reconstructed at the aortic and pulmonary outflow. Flow curves were calculated and peak flows and stroke volumes (SV) compared to the results from 2D-flow acquisitions. Intra-cardiac flow was visualized using particle tracing and image quality based on the flow patterns of the particles was graded using a four-point scale. Results: Good accuracy of SV quantification was found using 3 T 4D-SENSE (r(2) = 0.86, -0.7 +/- 7.6%) and although a larger bias was found on 1.5 T (r(2) = 0.71, -3.6 +/- 14.8%), the difference was not significant (p = 0.46). Accuracy of 4D k-t BLAST for SV was lower (p < 0.01) on 1.5 T (r(2) = 0.65, -15.6 +/- 13.7%) compared to 3 T (r(2) = 0.64, -4.6 +/- 10.0%). Peak flow was lower with 4D-SENSE at both 3 T and 1.5 T compared to 2D-flow (p < 0.01) and even lower with 4D k-t BLAST at both scanners (p < 0.01). Intracardiac flow visualization did not differ between 1.5 T and 3 T (p = 0.09) or between 4D-SENSE or 4D k-t BLAST (p = 0.85). Conclusions: The present study showed that quantitative 4D flow accelerated with SENSE has good accuracy at 3 T and compares favourably to 1.5 T. 4D flow accelerated with k-t BLAST underestimate flow velocities and thereby yield too high bias for intra-cardiac quantitative in vivo use at the present time. For intra-cardiac 4D-flow visualization, however, 1.5 T and 3 T as well as SENSE or k-t BLAST can be used with similar quality.
  •  
5.
  • Hedström, Erik, et al. (författare)
  • Effects of gadolinium contrast agent on aortic blood flow and myocardial strain measurements by phase-contrast cardiovascular magnetic resonance
  • 2010
  • Ingår i: Journal of Cardiovascular Magnetic Resonance. - 1097-6647. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Quantitative blood flow and aspects of regional myocardial function such as myocardial displacement and strain can be measured using phase-contrast cardiovascular magnetic resonance (PC-CMR). Since a gadolinium-based contrast agent is often used to measure myocardial infarct size, we sought to determine whether the contrast agent affects measurements of aortic flow and myocardial displacement and strain. Phase-contrast data pre and post contrast agent was acquired during free breathing using 1.5T PC-CMR. Results: For aortic flow and regional myocardial function 12 and 17 patients were analysed, respectively. The difference pre and post contrast agent was 0.03 +/- 0.16 l/min for cardiac output, and 0.1 +/- 0.5 mm for myocardial displacement. Linear regression for myocardial displacement (MD) after and before contrast agent (CA) showed MDpostCA = 0.95MD(preCA)+0.05 (r = 0.95, p < 0.001). For regional myocardial function, the contrast-to-noise ratios for left ventricular myocardial wall versus left ventricular lumen were pre and post contrast agent administration 7.4 +/- 3.3 and 4.4 +/- 8.9, respectively (p < 0.001). The contrast-to-noise ratios for left ventricular myocardial wall versus surrounding tissue were pre and post contrast agent administration -16.9 +/- 22 and -0.2 +/- 6.3, respectively (p < 0.0001). Conclusions: Quantitative measurements of aortic flow yield equal results both in the absence and presence of gadolinium contrast agent. The total examination time may thereby be reduced when assessing both viability and quantitative flow using PC-CMR, by assessing aortic flow post contrast agent administration. Phase-contrast information for myocardial displacement is also assessable both in the absence and presence of contrast agent. However, delineation of the myocardium may be difficult or impossible post contrast agent due to the lower image contrast. Acquisition of myocardial displacement should therefore be performed pre contrast agent using current PC-CMR sequences.
  •  
6.
  • Wirestam, Ronnie, et al. (författare)
  • Regional cerebral blood flow distributions in normal volunteers: dynamic susceptibility contrast MRI compared with 99mTc-HMPAO SPECT
  • 2000
  • Ingår i: Journal of Computer Assisted Tomography. - 1532-3145. ; 24:4, s. 526-530
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE: Relative regional cerebral blood flow (rCBF) at rest was measured in 44 volunteers using both dynamic susceptibility contrast (DSC) MRI and (99m)Tc-HMPAO SPECT on the same day. METHOD: In MRI, a Gd-DTPA-BMA contrast agent bolus (0.3 mmol/kg body wt) was monitored with a simultaneous dual FLASH pulse sequence (time resolution 1.5 s). MRI-based rCBF images were calculated by singular value decomposition-based deconvolution of the measured tissue concentration-time curve with an arterial input function from a small artery within the imaging slice. In the SPECT investigation, 900 MBq of (99m)Tc-HMPAO was injected intravenously. Relative rCBF in gray matter in the thalamus and in frontal white matter was determined. RESULTS: The ratio of relative rCBF in gray matter to relative rCBF in white matter was 2.21 +/- 0.57 using MRI and 2.24 +/- 0.54 using SPECT (mean +/- SD). CONCLUSION: Relative rCBF maps from DSC MRI and (99m)Tc-HMPAO SPECT showed good agreement, and the MRI-based rCBF ratio correlated with the corresponding SPECT-based ratio (r = 0.79, p < 0.0000006).
  •  
7.
  • Ahlgren, André, et al. (författare)
  • A linear mixed perfusion model for tissue partial volume correction of perfusion estimates in dynamic susceptibility contrast MRI: : Impact on absolute quantification, repeatability, and agreement with pseudo-continuous arterial spin labeling
  • 2017
  • Ingår i: Magnetic Resonance in Medicine. - : Wiley. - 1522-2594 .- 0740-3194. ; 77:6, s. 2203-2214
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE: The partial volume effect (PVE) is an important source of bias in brain perfusion measurements. The impact of tissue PVEs in perfusion measurements with dynamic susceptibility contrast MRI (DSC-MRI) has not yet been well established. The purpose of this study was to suggest a partial volume correction (PVC) approach for DSC-MRI and to study how PVC affects DSC-MRI perfusion results.METHODS: A linear mixed perfusion model for DSC-MRI was derived and evaluated by way of simulations. Twenty healthy volunteers were scanned twice, including DSC-MRI, arterial spin labeling (ASL), and partial volume measurements. Two different algorithms for PVC were employed and assessed.RESULTS: Simulations showed that the derived model had a tendency to overestimate perfusion values in voxels with high fractions of cerebrospinal fluid. PVC reduced the tissue volume dependence of DSC-MRI perfusion values from 44.4% to 4.2% in gray matter and from 55.3% to 14.2% in white matter. One PVC method significantly improved the voxel-wise repeatability, but PVC did not improve the spatial agreement between DSC-MRI and ASL perfusion maps.CONCLUSION: Significant PVEs were found for DSC-MRI perfusion estimates, and PVC successfully reduced those effects. The findings suggest that PVC might be an important consideration for DSC-MRI applications. Magn Reson Med, 2016. © 2016 Wiley Periodicals, Inc.
  •  
8.
  •  
9.
  • Ahlgren, André, et al. (författare)
  • Partial volume correction of brain perfusion estimates using the inherent signal data of time-resolved arterial spin labeling.
  • 2014
  • Ingår i: NMR in Biomedicine. - : Wiley. - 0952-3480. ; 27:9, s. 1112-1122
  • Tidskriftsartikel (refereegranskat)abstract
    • Quantitative perfusion MRI based on arterial spin labeling (ASL) is hampered by partial volume effects (PVEs), arising due to voxel signal cross-contamination between different compartments. To address this issue, several partial volume correction (PVC) methods have been presented. Most previous methods rely on segmentation of a high-resolution T1 -weighted morphological image volume that is coregistered to the low-resolution ASL data, making the result sensitive to errors in the segmentation and coregistration. In this work, we present a methodology for partial volume estimation and correction, using only low-resolution ASL data acquired with the QUASAR sequence. The methodology consists of a T1 -based segmentation method, with no spatial priors, and a modified PVC method based on linear regression. The presented approach thus avoids prior assumptions about the spatial distribution of brain compartments, while also avoiding coregistration between different image volumes. Simulations based on a digital phantom as well as in vivo measurements in 10 volunteers were used to assess the performance of the proposed segmentation approach. The simulation results indicated that QUASAR data can be used for robust partial volume estimation, and this was confirmed by the in vivo experiments. The proposed PVC method yielded probable perfusion maps, comparable to a reference method based on segmentation of a high-resolution morphological scan. Corrected gray matter (GM) perfusion was 47% higher than uncorrected values, suggesting a significant amount of PVEs in the data. Whereas the reference method failed to completely eliminate the dependence of perfusion estimates on the volume fraction, the novel approach produced GM perfusion values independent of GM volume fraction. The intra-subject coefficient of variation of corrected perfusion values was lowest for the proposed PVC method. As shown in this work, low-resolution partial volume estimation in connection with ASL perfusion estimation is feasible, and provides a promising tool for decoupling perfusion and tissue volume. Copyright © 2014 John Wiley & Sons, Ltd.
  •  
10.
  • Ahlgren, André, et al. (författare)
  • Perfusion quantification by model-free arterial spin labeling using nonlinear stochastic regularization deconvolution.
  • 2013
  • Ingår i: Magnetic Resonance in Medicine. - : Wiley. - 1522-2594 .- 0740-3194. ; 70:5, s. 1470-1480
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: Quantification of cerebral blood flow can be accomplished by model-free arterial spin labeling using the quantitative STAR labeling of arterial regions (QUASAR) sequence. The required deconvolution is normally based on block-circulant singular value decomposition (cSVD)/oscillation SVD (oSVD), an algorithm associated with nonphysiological residue functions and potential effects of arterial dispersion. The aim of this work was to amend this by implementing nonlinear stochastic regularization (NSR) deconvolution, previously used to retrieve realistic residue functions in dynamic susceptibility contrast MRI. METHODS: To characterize the residue function in model-free arterial spin labeling, and possibly to improve absolute cerebral blood flow quantification, NSR was applied to deconvolution of QUASAR data. For comparison, SVD-based deconvolution was also employed. Residue function characteristics and cerebral blood flow values from 10 volunteers were obtained. Simulations were performed to support the in vivo results. RESULTS: NSR was able to resolve realistic residue functions in contrast to the SVD-based methods. Mean cerebral blood flow estimates in gray matter were 36.6 ± 2.6, 28.6 ± 3.3, 40.9 ± 3.6, and 42.9 ± 3.9 mL/100 g/min for cSVD, oSVD, NSR, and NSR with correction for arterial dispersion, respectively. In simulations, the NSR-based perfusion estimates showed better accuracy than the SVD-based approaches. CONCLUSION: Perfusion quantification by model-free arterial spin labeling is evidently dependent on the selected deconvolution method, and NSR is a feasible alternative to SVD-based methods. Magn Reson Med, 2012. © 2012 Wiley Periodicals, Inc.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 116
Typ av publikation
tidskriftsartikel (109)
forskningsöversikt (3)
konferensbidrag (2)
proceedings (redaktörskap) (1)
annan publikation (1)
Typ av innehåll
refereegranskat (113)
övrigt vetenskapligt/konstnärligt (3)
Författare/redaktör
Wirestam, Ronnie (60)
Knutsson, Linda (33)
Holtås, Stig (30)
Nilsson, Markus (22)
Lätt, Jimmy (20)
visa fler...
Larsson, Elna-Marie (19)
van Westen, Danielle (17)
Markenroth Bloch, Ka ... (13)
Björkman-Burtscher, ... (9)
Ahlgren, André (8)
Lind, Emelie (8)
Lindgren, Arne (8)
Sundgren, Pia (6)
Szczepankiewicz, Fil ... (5)
Topgaard, Daniel (5)
Johansson, Edvin (5)
Bibic, Adnan (5)
Nilsson, Anders (4)
Svensson, Jonas (4)
Carlsson, Marcus (4)
Strand, Sven-Erik (4)
Arheden, Håkan (4)
Heiberg, Einar (4)
Sundgren, Pia C. (3)
Eriksson, Joakim (3)
Ryding, Erik (3)
Johansson, Gerd (3)
Englund, Elisabet (3)
Lasič, Samo (3)
Nordell, Bo (3)
Persson, Bertil R (3)
Ingvar, Christian (3)
Töger, Johannes (3)
Borg, M (2)
Andersson-Engels, St ... (2)
Salford, Leif (2)
Nilsson, Christer (2)
Petersen, Esben Thad ... (2)
Leander, Peter (2)
Olsson, Lars E (2)
Gustafson, Lars (2)
Risberg, Jarl (2)
Månsson, Sven (2)
Malmgren, Lars (2)
Lampinen, Björn (2)
Fredriksson, Sarah (2)
Passant, Ulla (2)
Laurin, Sven (2)
Malmgren, N. (2)
visa färre...
Lärosäte
Lunds universitet (116)
Uppsala universitet (2)
Göteborgs universitet (1)
Linköpings universitet (1)
Karolinska Institutet (1)
Språk
Engelska (113)
Svenska (3)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (116)
Naturvetenskap (14)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy