SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "hsv:(MEDICIN OCH HÄLSOVETENSKAP) hsv:(Medicinsk bioteknologi) hsv:(Biomedicinsk laboratorievetenskap/teknologi) ;pers:(Landegren Ulf)"

Sökning: hsv:(MEDICIN OCH HÄLSOVETENSKAP) hsv:(Medicinsk bioteknologi) hsv:(Biomedicinsk laboratorievetenskap/teknologi) > Landegren Ulf

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Darmanis, Spyros, et al. (författare)
  • ProteinSeq : high-performance proteomic analyses by proximity ligation and next generation sequencing
  • 2011
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 6:9, s. e25583-
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite intense interest, methods that provide enhanced sensitivity and specificity in parallel measurements of candidate protein biomarkers in numerous samples have been lacking. We present herein a multiplex proximity ligation assay with readout via realtime PCR or DNA sequencing (ProteinSeq). We demonstrate improved sensitivity over conventional sandwich assays for simultaneous analysis of sets of 35 proteins in 5 μl of blood plasma. Importantly, we observe a minimal tendency to increased background with multiplexing, compared to a sandwich assay, suggesting that higher levels of multiplexing are possible. We used ProteinSeq to analyze proteins in plasma samples from cardiovascular disease (CVD) patient cohorts and matched controls. Three proteins, namely P-selectin, Cystatin-B and Kallikrein-6, were identified as putative diagnostic biomarkers for CVD. The latter two have not been previously reported in the literature and their potential roles must be validated in larger patient cohorts. We conclude that ProteinSeq is promising for screening large numbers of proteins and samples while the technology can provide a much-needed platform for validation of diagnostic markers in biobank samples and in clinical use. 
  •  
2.
  • Ke, Rongqin (författare)
  • Detection and Sequencing of Amplified Single Molecules
  • 2012
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Improved analytical methods provide new opportunities for both biological research and medical applications. This thesis describes several novel molecular techniques for nucleic acid and protein analysis based on detection or sequencing of amplified single molecules (ASMs). ASMs were generated from padlock probe assay and proximity ligation assay (PLA) through a series of molecular processes.In Paper I, a simple colorimetric readout strategy for detection of ASMs generated from padlock probe assay was used for highly sensitive detection of RNA virus, showing the potential of using padlock probes in the point-of-care diagnostics. In Paper II, digital quantification of ASMs, which were generated from padlock probe assay and PLA through circle-to-circle amplification (C2CA), was used for rapid and sensitive detection of nucleic acids and proteins, aiming for applications in biodefense. In Paper III, digital quantification of ASMs that were generated from PLA without C2CA was shown to be able to improve the precision and sensitivity of PLA when compared to the conventional real-time PCR readout. In Paper IV, a non-optical approach for detection of ASMs generated from PLA was used for sensitive detection of bacterial spores. ASMs were detected through sensing oligonucleotide-functionalized magnetic nanobeads that were trapped within them.Finally, based on in situ sequencing of ASMs generated via padlock probe assay, a novel method that enabled sequencing of individual mRNA molecules in their natural context was established and presented in Paper V. Highly multiplex detection of mRNA molecules was also achieved based on in situ sequencing. In situ sequencing allows studies of mRNA molecules from different aspects that cannot be accessed by current in situ hybridization techniques, providing possibilities for discovery of new information from the complexity of transcriptome. Therefore, it has a great potential to become a useful tool for gene expression research and disease diagnostics.
  •  
3.
  •  
4.
  • Kühnemund, Malte (författare)
  • Single Molecule Detection : Microfluidic Automation and Digital Quantification
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Much of recent progress in medical research and diagnostics has been enabled through the advances in molecular analysis technologies, which now permit the detection and analysis of single molecules with high sensitivity and specificity. Assay sensitivity is fundamentally limited by the efficiency of the detection method used for read-out. Inefficient detection systems are usually compensated for by molecular amplification at the cost of elevated assay complexity.This thesis presents microfluidic automation and digital quantification of targeted nucleic acid detection methods based on padlock and selector probes and rolling circle amplification (RCA). In paper I, the highly sensitive, yet complex circle-to-circle amplification assay was automated on a digital microfluidic chip. In paper II, a new RCA product (RCP) sensing principle was developed based on resistive pulse sensing that allows label free digital RCP quantification. In paper III, a microfluidic chip for spatial RCP enrichment was developed, which enables the detection of RCPs with an unprecedented efficiency and allows for deeper analysis of enriched RCPs through next generation sequencing chemistry. In paper IV, a smart phone was converted into a multiplex fluorescent imaging device that enables imaging and quantification of RCPs on slides as well as within cells and tissues. KRAS point mutations were detected (i) in situ, directly in tumor tissue, and (ii) by targeted sequencing of extracted tumor DNA, imaged with the smart phone RCP imager. This thesis describes the building blocks required for the development of highly sensitive low-cost RCA-based nucleic acid analysis devices for utilization in research and diagnostics.
  •  
5.
  • Nong, Rachel Yuan, 1982- (författare)
  • Proximity Ligation Assays for Disease Biomarkers Analysis
  • 2011
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • One of the pressing needs in the field of disease biomarker discovery is new technologies that could allow high performance protein analysis in different types of clinical material, such as blood and solid tissues. This thesis includes four approaches that address important limitations of current technologies, thus enabling highly sensitive, specific and parallel protein measurements.Paper I describes a method for sensitive singleplex protein detection in complex biological samples, namely solid phase proximity ligation assay (SP-PLA). SP-PLA exhibited improved sensitivity compared to conventional sandwich immunoassays. We applied SP-PLA to validate the potential of GDF-15 as a biomarker for cardiovascular disease.  Paper II describes ProteinSeq, a multiplexed immunoassay based on the principle of SP-PLA, for parallel detection of 36 proteins using next-generation sequencing as readout. ProteinSeq exhibited improved sensitivity compared to multiplexed sandwich immunoassays, and the potential to achieve even higher levels of multiplexing while preserving a high sensitivity and specificity. We applied ProteinSeq to analyze 36 proteins, including one internal control, in 5 μl of plasma samples in a cohort of patients with cardiovascular disease and healthy controls.Paper III describes PLA-DTM, a strategy for recording all possible interactions between sets of proteins in clinical samples. Individual proteins and their interactions are first encoded to dual barcoded DNA by PLA, and the barcodes are interrogated by a method named dual tag microarray (DTM). We applied the method for studying interactions among protein members of the NFκB signaling pathway.Paper IV describes a novel probing strategy for analyzing individual biomolecules in solution or in situ. The technique employs a new class of probes for unfolding proximity ligation assays - uPLA probes. The probes are designed so that each probe set is sufficient in forming and replicating circular DNA reporter, without interactions among themselves when incubated with the sample. The uPLA probing strategy provides ease in the design of multiple probe sets in parallelized assays while enhancing the specificity of detection. We used the uPLA probes to detect various targets, including synthetic DNA and cancer-related transcripts in situ.
  •  
6.
  • Nong, Rachel Yuan, 1982-, et al. (författare)
  • Unfolding proximity ligation probes for measuring and imaging individual nucleic acid and protein molecules
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • We present a new class of probes for molecular detection reactions - probes for unfolding proximity ligation assays. These are secondarily structured nucleic acid reagents that can be induced to unfold in order to undergo proximity ligation reactions, followed by visualization via localized single molecule amplification. The probes enable highly specific targeting of individual nucleic acid or protein molecule. We demonstrated the performance of these new probes by detecting synthetic DNA and cancer-related transcripts in situ and multiplex probing of proteins in solution. 
  •  
7.
  • Zhao, Hongxing, et al. (författare)
  • Detection of SARS-CoV-2 antibodies in serum and dried blood spot samples of vaccinated individuals using a sensitive homogeneous proximity extension assay.
  • 2022
  • Ingår i: New biotechnology. - : Elsevier BV. - 1871-6784 .- 1876-4347. ; 72, s. 139-148
  • Tidskriftsartikel (refereegranskat)abstract
    • A homogeneous PCR-based assay for sensitive and specific detection of antibodies in serum or dried blood spots (DBS) is presented and the method is used to monitor individuals infected with or vaccinated against SARS-CoV-2. Detection probes were prepared by conjugating the recombinant spike protein subunit 1 (S1), containing the receptor binding domain (RBD) of SARS-CoV-2, to each of a pair of specific oligonucleotides. The same was done for the nucleocapsid protein (NP). Upon incubation with serum or DBS samples, the bi- or multivalency of the antibodies (IgG, IgA or IgM) brings pairs of viral proteins with their conjugated oligonucleotides in proximity, allowing the antibodies to be detected by a modified proximity extension assay (PEA). Anti-S1 and anti-NP antibodies could be detected simultaneously from one incubation reaction. This Antibody PEA (AbPEA) test uses only 1µl of neat or up to 100,000-fold diluted serum or one ø1.2mm disc cut from a DBS. All 100 investigated sera and 21 DBS collected prior to the COVID-19 outbreak were negative, demonstrating a 100% specificity. The area under the curve, as evaluated by Receiver Operating Characteristic (ROC) analysis reached 0.998 (95%CI: 0.993-1) for samples taken from 11 days after symptoms onset. The kinetics of antibody responses were monitored after a first and second vaccination using serially collected DBS from 14 individuals. AbPEA offers highly specific and sensitive solution-phase antibody detection without requirement for secondary antibodies, no elution step when using DBS sample in a simple procedure that lends itself to multiplex survey of antibody responses.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy