SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "hsv:(MEDICIN OCH HÄLSOVETENSKAP) hsv:(Medicinsk bioteknologi) hsv:(Biomedicinsk laboratorievetenskap/teknologi) ;pers:(Wårdell Karin)"

Sökning: hsv:(MEDICIN OCH HÄLSOVETENSKAP) hsv:(Medicinsk bioteknologi) hsv:(Biomedicinsk laboratorievetenskap/teknologi) > Wårdell Karin

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andersson, Kennet, 1979- (författare)
  • Assessment of cerebrospinal fluid system dynamics : novel infusion protocol, mathematical modelling and parameter estimation for hydrocephalus investigations
  • 2011
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Patients with idiopathic normal pressure hydrocephalus (INPH) have a disturbance in the cerebrospinal fluid (CSF) system. The treatment is neurosurgical – a shunt is placed in the CSF system. The infusion test is used to assess CSF system dynamics and to aid in the selection of patients that will benefit from shunt surgery. The infusion test can be divided into three parts: a mathematical model, an infusion protocol and a parameter estimation method. A non-linear differential equation is used to mathematically describe the CSF system, where two important parameters are the outflow conductance (Cout) and the Pressure Volume Index (PVI). These are used both for clinical and research purposes. The analysis methods for the non-linear CSF system have limited the infusion protocols of presently used infusion investigations. They come with disadvantages such as long investigation time, no estimation of PVI and no measure of the reliability of the estimates.The aim of this dissertation was to develop and evaluate novel methods for infusion protocols, mathematical modelling and parameter estimation methods for assessment of CSF system dynamics.The infusion protocols and parameter estimation methods in current use, constant pressure infusion (CPI), constant infusion and bolus infusion, were investigated. The estimates of Cout were compared, both on an experimental set-up and on 20 INPH patients. The results showed that the bolus method produced a significantly higher Cout than the other methods. The study suggested a method with continuous infusion for estimating Cout and emphasized that standardization of Cout measurement is necessary.The non-linear model of the CSF system was further developed. The ability to model physiological variations that affect the CSF system was incorporated into the model and it was transformed into a linear time-invariant system. This enabled the use of methods developed for identification of such systems. The underlying model for CSF absorption was discussed and the effect of baseline resting pressure (Pr) in the analysis on the estimation of Cout was explored using two different analyses, with and without Pr.A novel infusion protocol with an oscillating pressure pattern was introduced. This protocol was theoretically better suited for the CSF system characteristics. Three new parameter estimation methods were developed. The adaptive observer was developed from the original non-linear model of the CSF system and estimated Cout in real time. The prediction error method (PEM) and the robust simulation error (RSE) method were based on the transformed linear system, and they estimated both Cout and PVI with confidence intervals in real time. Both the oscillating pressure pattern and the reference CPI protocol were performed on an experimental set-up of the CSF system and on 47 hydrocephalus patients. The parameter estimation methods were applied to the data, and the RSE method produced estimates of Cout that were in good agreement with the reference method and allowed for an individualized and considerably reduced investigation time.In summary, current methods have been investigated and a novel approach for assessment of CSF system dynamics has been presented. The Oscillating Pressure Infusion method, which includes a new infusion protocol, a further developed mathematical model and new parameter estimation methods has resulted in an improved way to perform infusion investigations and should be used when assessing CSF system dynamics. The advantages of the new approach are the pressure-regulated infusion protocol, simultaneous estimation of Cout and PVI and estimates of reliability that allow for an individualized investigation time.
  •  
2.
  • Antonsson, Johan, et al. (författare)
  • Optical measurements during experimental stereotactic radiofrequency lesioning
  • 2006
  • Ingår i: Stereotactic and Functional Neurosurgery. - : S. Karger. - 1011-6125 .- 1423-0372. ; 84:2-3, s. 118-124
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of this study was to evaluate in vivo a laser Doppler measurement system in porcine brain tissue during thermal lesioning. A 2-mm monopolar radiofrequency lesioning electrode was equipped with optical fibers in order to monitor the lesioning procedure. Laser Doppler and backscattered light intensity signals were measured along the electrode trajectory and during bilateral lesioning in the central gray (70, 80 and 90°C, n = 14). The time course of the coagulation process could be followed by optical recordings. Two separate groups of tissue were identified from the intensity signals. The changes in the perfusion levels in both groups displayed significant changes (p < 0.05, n = 48) at all temperature settings, while backscattered light intensity was significant for only one group at the different temperatures (p < 0.05, n = 39). These results indicate that optical measurements correlate with lesion development in vivo. The study also indicates that it is possible to follow the lesioning process intra-operatively.
  •  
3.
  • Haj-Hosseini, Neda, 1980-, et al. (författare)
  • Photobleaching behavior of protoporphyrin IX during 5-aminolevulinic acid marked glioblastoma detection
  • 2009
  • Ingår i: PHOTONIC THERAPEUTICS AND DIAGNOSTICS V. - : SPIE. - 0277-786X .- 1996-756X. - 9780819474070 ; 7161
  • Konferensbidrag (refereegranskat)abstract
    • The highly malignant brain tumor, glioblastoma multiforme (GBM), is difficult to fully delineate during surgical resection due to its infiltrative ingrowth and morphological similarities to surrounding functioning brain tissue. Selectiveness of GBM to 5-aminolevulinic acid (5-ALA) induced protoporphyrin IX (PpIX) is reported by other researchers to visualize tumor margins under blue light microscopy. To allow objective detection of GBM, a compact and portable fiber optic based fluorescence spectroscopy system is developed. This system is able to deliver excitation laser light (405 nm) in both the continuous and pulsed mode. PpIX fluorescence peaks are detected at 635 and 704 nm, using a fiber-coupled spectrometer. It is necessary to optimize the detection efficiency of the system as the PpIX quickly photobleaches during the laser illumination. A light dose of 2.5 mJ (fluence rate = 9 mJ/mm(2)) is experimentally approved to excite an acceptable level of fluourescence signal arising from glioblastoma. In pulsed illumination mode, an excitation dose of 2.5 mJ, with a dark interval of 0.5 s (duty cycle 50\%) shows a significantly shorter photobleaching time in comparison to the continuous illumination mode with the same laser power (p < 0.05). To avoid photobleaching (the remaining signal is more than 90\% of its initial value) when measuring with 2.5 mJ delivered energy, the time for continuous and pulsed illumination should be restricted to 2.5 and 1.1 s, respectively.
  •  
4.
  • Hemm, Simone, et al. (författare)
  • Stereotactic implantation of deep brain stimulation electrodes: a review of technical systems, methods and emerging tools
  • 2010
  • Ingår i: Medical and Biological Engineering and Computing. - : Springer Science and Business Media LLC. - 0140-0118 .- 1741-0444. ; 48:7, s. 611-624
  • Tidskriftsartikel (refereegranskat)abstract
    • Deep brain stimulation (DBS) has become increasingly important for the treatment and relief of neurological disorders such as Parkinson's disease, tremor, dystonia and psychiatric illness. As DBS implantations and any other stereotactic and functional surgical procedure require accurate, precise and safe targeting of the brain structure, the technical aids for preoperative planning, intervention and postoperative follow-up have become increasingly important. The aim of this paper was to give and overview, from a biomedical engineering perspective, of a typical implantation procedure and current supporting techniques. Furthermore, emerging technical aids not yet clinically established are presented. This includes the state-of-the-art of neuroimaging and navigation, patient-specific simulation of DBS electric field, optical methods for intracerebral guidance, movement pattern analysis, intraoperative data visualisation and trends related to new stimulation devices. As DBS surgery already today is an important technology intensive domain, an "intuitive visualisation" interface for improving management of these data in relation to surgery is suggested.
  •  
5.
  • Latorre, Malcolm, 1967- (författare)
  • The Physical Axon : Modeling, Simulation and Electrode Evaluation
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Electrodes are used in medicine for detection of biological signals and for stimulating tissue, e.g. in deep brain stimulation (DBS). For both applications, an understanding of the functioning of the electrode, and its interface and interaction with the target tissue involved is necessary. To date, there is no standardized method for medical electrode evaluation that allows transferability of acquired data. In this thesis, a physical axon (Paxon) potential generator was developed as a device to facilitate standardized comparisons of different electrodes. The Paxon generates repeatable, tuneable and physiological-like action potentials from a peripheral nerve. It consists of a testbed comprising 40 software controlled 20 μm gold wires embedded in resin, each wire mimicking a node of Ranvier. ECG surface Ag-AgCl electrodes were systematically tested with the Paxon. The results showed small variations in orientation (rotation) and position (relative to axon position) which directly impact the acquired signal. Other electrode types including DBS electrodes can also be evaluated with the Paxon.A theoretical comparison of a single cable neuronal model with an alternative established double cable neuron model was completed. The output with regards to DBS was implemented to comparing the models. These models were configured to investigate electrode stimulation activity, and in turn to assess the activation distance by DBS for changes in axon diameter (1.5-10 μm), pulse shape (rectangular biphasic and rectangular, triangular and sinus monophasic) and drive strength (1-5 V or mA). As both models present similar activation distances, sensitivity to input shape and computational time, the neuron model selection for DBS could be based on model complexity and axon diameter flexibility. An application of the in-house neuron model for multiple DBS lead designs, in a patient-specific simulation study, was completed. Assessments based on the electric field along multiple sample planes of axons support previous findings that a fixed electric field isolevel is sufficient for assessments of tissue activation distances for a predefined axon diameter and pulse width in DBS.
  •  
6.
  • Wårdell, Karin, et al. (författare)
  • High-Resolution Laser Doppler Measurements of Microcirculation in the Deep Brain Structures : A Method for Potential Vessel Tracking.
  • 2016
  • Ingår i: Stereotactic and Functional Neurosurgery. - : S. Karger. - 1011-6125 .- 1423-0372. ; 94:1, s. 1-9
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Laser Doppler flowmetry (LDF) can be used to measure cerebral microcirculation in relation to stereotactic deep brain stimulation (DBS) implantations.OBJECTIVE: To investigate the microcirculation and total light intensity (TLI) corresponding to tissue grayness in DBS target regions with high-resolution LDF recordings, and to define a resolution which enables detection of small vessels.METHODS: Stereotactic LDF measurements were made prior to DBS implantation with 0.5-mm steps in the vicinity to 4 deep brain targets (STN, GPi, Vim, Zi) along 20 trajectories. The Mann-Whitney U test was used to compare the microcirculation and TLI between targets, and the measurement resolution (0.5 vs. 1 mm). The numbers of high blood flow spots along the trajectories were calculated.RESULTS: There was a significant difference (p < 0.05) in microcirculation between the targets. High blood flow spots were present at 15 out of 510 positions, 7 along Vim and GPi trajectories, respectively. There was no statistical difference between resolutions even though both local blood flow and TLI peaks could appear at 0.5-mm steps.CONCLUSIONS: LDF can be used for online tracking of critical regions presenting blood flow and TLI peaks, possibly relating to vessel structures and thin laminas along stereotactic trajectories.
  •  
7.
  • Wårdell, Karin, et al. (författare)
  • Intracerebral microvascular measurements during deep brain stimulation implantation using laser doppler perfusion monitoring
  • 2007
  • Ingår i: Stereotactic and Functional Neurosurgery. - : S. Karger. - 1011-6125 .- 1423-0372. ; 85:6, s. 279-286
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of the study was to investigate if laser Doppler perfusion monitoring (LDPM) can be used in order to differentiate between gray and white matter and to what extent microvascular perfusion can be recorded in the deep brain structures during stereotactic neurosurgery. An optical probe constructed to fit in the Leksell® Stereotactic System was used for measurements along the trajectory and in the targets (globus pallidus internus, subthalamic nucleus, zona incerta, thalamus) during the implantation of deep brain stimulation leads (n = 22). The total backscattered light intensity (TLI) reflecting the grayness of the tissue, and the microvascular perfusion were captured at 128 sites. Heartbeat-synchronized pulsations were found at all perfusion recordings. In 6 sites the perfusion was more than 6 times higher than the closest neighbor indicating a possible small vessel structure. TLI was significantly higher (p < 0.005) and the perfusion significantly lower (p < 0.005) in positions identified as white matter in the respective MRI batch. The measurements imply that LDPM has the potential to be used as an intracerebral guidance tool.
  •  
8.
  • Åström, Mattias, et al. (författare)
  • Method for patient-specific finite element modeling and simulation of deep brain stimulation
  • 2009
  • Ingår i: Medical and Biological Engineering and Computing. - : Springer. - 0140-0118 .- 1741-0444. ; 47:1, s. 21-28
  • Tidskriftsartikel (refereegranskat)abstract
    • Deep brain stimulation (DBS) is an established treatment for Parkinsons disease. Success of DBS is highly dependent on electrode location and electrical parameter settings. The aim of this study was to develop a general method for setting up patient-specific 3D computer models of DBS, based on magnetic resonance images, and to demonstrate the use of such models for assessing the position of the electrode contacts and the distribution of the electric field in relation to individual patient anatomy. A software tool was developed for creating finite element DBS-models. The electric field generated by DBS was simulated in one patient and the result was visualized with isolevels and glyphs. The result was evaluated and it corresponded well with reported effects and side effects of stimulation. It was demonstrated that patient-specific finite element models and simulations of DBS can be useful for increasing the understanding of the clinical outcome of DBS.
  •  
9.
  • Åström, Mattias, et al. (författare)
  • Patient-Specific Model-Based Investigation of Speech Intelligibility and Movement during Deep Brain Stimulation
  • 2010
  • Ingår i: Stereotactic and Functional Neurosurgery. - : S. Karger AG. - 1011-6125 .- 1423-0372. ; 88:4, s. 224-233
  • Tidskriftsartikel (refereegranskat)abstract
    • Background/Aims: Deep brain stimulation (DBS) is widely used to treat motor symptoms in patients with advanced Parkinson’s disease. The aim of this study was to investigate the anatomical aspects of the electric field in relation to effects on speech and movement during DBS in the subthalamic nucleus. Methods: Patient-specific finite element models of DBS were developed for simulation of the electric field in 10 patients. In each patient, speech intelligibility and movement were assessed during 2 electrical settings, i.e. 4 V (high) and 2 V (low). The electric field was simulated for each electrical setting. Results: Movement was improved in all patients for both high and low electrical settings. In general, high-amplitude stimulation was more consistent in improving the motor scores than low-amplitude stimulation. In 6 cases, speech intelligibility was impaired during high-amplitude electrical settings. Stimulation of part of the fasciculus cerebellothalamicus from electrodes positioned medial and/or posterior to the center of the subthalamic nucleus was recognized as a possible cause of the stimulation-induced dysarthria. Conclusion: Special attention to stimulation-induced speech impairments should be taken in cases when active electrodes are positioned medial and/or posterior to the center of the subthalamic nucleus.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy