SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "hsv:(MEDICIN OCH HÄLSOVETENSKAP) hsv:(Medicinska och farmaceutiska grundvetenskaper) hsv:(Cell och molekylärbiologi) ;pers:(Mörgelin Matthias)"

Sökning: hsv:(MEDICIN OCH HÄLSOVETENSKAP) hsv:(Medicinska och farmaceutiska grundvetenskaper) hsv:(Cell och molekylärbiologi) > Mörgelin Matthias

  • Resultat 1-10 av 37
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Li, Dai-Qing, et al. (författare)
  • Suppression of sulfonylurea- and glucose-induced insulin secretion in vitro and in vivo in mice lacking the chloride transport protein ClC-3.
  • 2009
  • Ingår i: Cell metabolism. - : Elsevier BV. - 1932-7420 .- 1550-4131. ; 10:4, s. 309-15
  • Tidskriftsartikel (refereegranskat)abstract
    • Priming of insulin secretory granules for release requires intragranular acidification and depends on vesicular Cl(-)-fluxes, but the identity of the chloride transporter/ion channel involved is unknown. We tested the hypothesis that the chloride transport protein ClC-3 fulfills these actions in pancreatic beta cells. In ClC-3(-/-) mice, insulin secretion evoked by membrane depolarization (high extracellular K(+), sulfonylureas), or glucose was >60% reduced compared to WT animals. This effect was mirrored by a approximately 80% reduction in depolarization-evoked beta cell exocytosis (monitored as increases in cell capacitance) in single ClC-3(-/-) beta cells, as well as a 44% reduction in proton transport across the granule membrane. ClC-3 expression in the insulin granule was demonstrated by immunoblotting, immunostaining, and negative immuno-EM in a high-purification fraction of large dense-core vesicles (LDCVs) obtained by phogrin-EGFP labeling. The data establish the importance of granular Cl(-) fluxes in granule priming and provide direct evidence for the involvement of ClC-3 in the process.
  •  
2.
  • Tomašić, Nikica, et al. (författare)
  • Fasting reveals largely intact systemic lipid mobilization mechanisms in respiratory chain complex III deficient mice
  • 2020
  • Ingår i: Biochimica et Biophysica Acta - Molecular Basis of Disease. - Amsterdam : ELSEVIER. - 0925-4439 .- 1879-260X. ; 1866:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Mice homozygous for the human GRACILE syndrome mutation (Bcs1l (c.A232G)) display decreased respiratory chain complex III activity, liver dysfunction, hypoglycemia, rapid loss of white adipose tissue and early death. To assess the underlying mechanism of the lipodystrophy in homozygous mice (Bcs1l(p.S)(78G)), these and wild-type control mice were subjected to a short 4-hour fast. The homozygotes had low baseline blood glucose values, but a similar decrease in response to fasting as in wild-type mice, resulting in hypoglycemia in the majority. Despite the already depleted glycogen and increased triacylglycerol content in the mutant livers, the mice responded to fasting by further depletion and increase, respectively. Increased plasma free fatty acids (FAs) upon fasting suggested normal capacity for mobilization of lipids from white adipose tissue into circulation. Strikingly, however, serum glycerol concentration was not increased concomitantly with free FM, suggesting its rapid uptake into the liver and utilization for fuel or gluconeogenesis in the mutants. The mutant hepatocyte mitochondria were capable of responding to fasting by appropriate morphological changes, as analyzed by electron microscopy, and by increasing respiration. Mutants showed increased hepatic gene expression of major metabolic controllers typically associated with fasting response (Ppargc1a, Fgf21, Cd36) already in the fed state, suggesting a chronic starvation-like metabolic condition. Despite this, the mutant mice responded largely normally to fasting by increasing hepatic respiration and switching to FA utilization, indicating that the mechanisms driving these adaptations are not compromised by the CIII dysfunction. Summary statement: Bcs1l mutant mice with severe CIII deficiency, energy deprivation and post-weaning lipolysis respond to fasting similarly to wild-type mice, suggesting largely normal systemic lipid mobilization and utilization mechanisms.
  •  
3.
  • Linge, Helena, et al. (författare)
  • Midkine is expressed and differentially processed during COPD exacerbations and ventilator-associated pneumonia associated with Staphylococcus aureus infection.
  • 2013
  • Ingår i: Molecular medicine (Cambridge, Mass.). - : Springer Science and Business Media LLC. - 1528-3658 .- 1076-1551. ; 19, s. 314-323
  • Tidskriftsartikel (refereegranskat)abstract
    • Staphylococcus aureus is sometimes isolated from the airways during acute exacerbations of chronic obstructive pulmonary disease (COPD) but more commonly recognized as a cause of ventilator-associated pneumonia (VAP). Antimicrobial proteins, among them midkine (MK), are an important part of innate immunity in the airways. In this study, the levels and possible processing of MK in relation to S. aureus infection of the airways were investigated, comparing COPD and VAP, thus comparing a state of disease with preceding chronic inflammation and remodeling (COPD) with acute inflammation (i.e. VAP). MK was detected in the small airways and alveoli of COPD lung tissue but less so in normal lung tissue. MK at below micromolar concentrations killed S. aureus in vitro. Proteolytic processing of MK by the staphylococcal metalloprotease AL but not cysteine protease SA, resulted in impaired bactericidal activity. Degradation was foremost seen in the COOH-terminal portion of the molecule that harbors high bactericidal activity. In addition, MK was detected in sputum from patients suffering from VAP caused by S. aureus but less so in sputum from COPD-exacerbations associated with the same bacterium. Recombinant MK was degraded more rapidly in sputum from the COPD patients than from the VAP patients and a greater proteolytic activity in COPD sputum was confirmed by zymography. Taken together, proteases of both bacteria and the host contribute to degradation of the antibacterial protein MK, resulting in an impaired defense of the airways, in particular in COPD where the state of chronic inflammation could be of importance.
  •  
4.
  • Bengtsson, Eva, et al. (författare)
  • The leucine-rich repeat protein PRELP binds perlecan and collagens and may function as a basement anchor.
  • 2002
  • Ingår i: Journal of Biological Chemistry. - 1083-351X. ; 277:17, s. 15061-15068
  • Tidskriftsartikel (refereegranskat)abstract
    • PRELP is a heparin-binding leucine-rich repeat protein in connective tissue extracellular matrix. In search of natural ligands and biological functions of this molecule, we found that PRELP binds the basement membrane heparan sulfate proteoglycan perlecan. Also recombinant perlecan domains I and V carrying heparan sulfate bound PRELP, whereas other domains without glycosaminoglycan substitution did not. Heparin, but not chondroitin sulfate, inhibited the interactions. Glycosaminoglycan-free recombinant perlecan domain V and mutated domain I did not bind PRELP. The dissociation constants of the PRELP-perlecan interactions were in the range of 3-18 nM as determined by surface plasmon resonance. As expected, truncated PRELP, without the heparin-binding domain, did not bind perlecan. Confocal immunohistochemistry showed that PRELP outlines basement membranes with a location adjacent to perlecan. We also found that PRELP binds collagen type I and type II through its leucine-rich repeat domain. Electron microscopy visualized a complex with PRELP binding simultaneously to the triple helical region of procollagen I and the heparan sulfate chains of perlecan. Based on the location of PRELP and its interaction with perlecan heparan sulfate chains and collagen, we propose a function of PRELP as a molecule anchoring basement membranes to the underlying connective tissue.
  •  
5.
  • Cattaruzza, S, et al. (författare)
  • Distribution of PG-M/versican variants in human tissues and de novo expression of isoform V3 upon endothelial cell activation, migration, and neoangiogenesis in vitro
  • 2002
  • Ingår i: Journal of Biological Chemistry. - 1083-351X. ; 277:49, s. 47626-47635
  • Tidskriftsartikel (refereegranskat)abstract
    • We have carried out a comprehensive molecular mapping of PG-M/versican isoforms V0-V3 in adult human tissues and have specifically investigated how the expression of these isoforms is regulated in endothelial cells in vitro. A survey of 21 representative tissues highlighted a prevalence of V1 mRNA, demonstrated that the relative frequency of expression was V1>V2>V3greater than or equal toV2; and showed that <15% of the tissues transcribed significant levels of all four isoforms. By employing novel and previously described anti-versican antibodies we verified a ubiquitous versican deposition in normal and tumor-associated vascular structures and disclosed differences in the glycanation profiles of versicans produced in different vascular beds. Resting endothelial cells isolated from different tissue sources transcribed several of the versican isoforms but consistently failed to translate these mRNAs into detectable proteoglycans. However, if stimulated with tumor necrosis factor-α or vascular endothelial growth factor, they altered their versican expression by de novo transcribing the V3 isoform and by exhibiting a moderate V1/V2 production. Induced versican synthesis and de novo V3 expression was also observed in endothelial cells elicited to migrate in a wound-healing model in vitro and in angiogenic endothelial cells forming tubule-like structures in Matrigel or fibrin clots. The results suggest that, independent of the degree of vascularization, human adult tissues show a limited expression of versican isoforms V0, V2, and V3 and that endothelial cells may contribute to the deposition of versican in vascular structures, but only following proper stimulation.
  •  
6.
  • Chakraborty, Paramita, et al. (författare)
  • Vesicular Location and Transport of S100A8 and S100A9 Proteins in Monocytoid Cells.
  • 2015
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 10:12
  • Tidskriftsartikel (refereegranskat)abstract
    • We show here, by using surface biotinylation, followed by Western blotting or surface plasmon resonance analysis, that very low levels of S100A8 and/or S100A9 can be detected on the surface of THP-1 cells or freshly isolated human monocytes. This was supported by immune-electron microscopy where we observed membrane-associated expression of the proteins restricted to small patches. By using confocal microscopy we could determine that S100A8 and S100A9 protein in THP-1 cells or freshly isolated human monocytes was mostly present in vesicular structures. This finding was confirmed using immune-electron microscopy. Subcellular fractionation and confocal microscopy showed that these vesicular structures are mainly early endosomes and endolysosomes. Our subsequent studies showed that accumulation of S100A8 and S100A9 in the endolysosomal compartment is associated with induction of their release from the cells. Furthermore, an inhibitor of lysosomal activity could modulate the release of S100A8 and S100A9 in the extracellular milieu. Our current results suggest that the S100A8 and S100A9 proteins are primarily associated with certain kinds of cytosolic vesicles and may be secreted via an endolysosomal pathway.
  •  
7.
  • Gram, Magnus, et al. (författare)
  • The radical-binding lipocalin A1M binds to a Complex I subunit and protects mitochondrial structure and function.
  • 2013
  • Ingår i: Antioxidants & Redox Signaling. - : Mary Ann Liebert Inc. - 1557-7716 .- 1523-0864. ; 18:16, s. 2017-2028
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: During cell death, energy-consuming cell degradation and recycling programs are performed. Maintenance of energy-delivery during cell death is therefore crucial but the mechanisms to keep the mitochondrial functions intact during these processes are poorly understood. We have investigated the hypothesis that the heme- and radical-binding ubiquitous protein A1M (α1-microglobulin) is involved in protection of the mitochondria against oxidative insult during cell death. Results: Using blood cells, keratinocytes and liver cells, we show that A1M binds with high affinity to apoptosis-induced cells and is localized to mitochondria. The mitochondrial Complex I subunit NDUFAB1 was identified as a major molecular target of the A1M-binding. Furthermore, A1M was shown to inhibit the swelling of mitochondria, and to reverse the severely abrogated ATP-production of mitochondria when exposed to heme and ROS. Innovation: Import of the radical- and heme-binding protein A1M from the extracellular compartment confers protection of mitochondrial structure and function during cellular insult. Conclusion: A1M binds to a subunit of Complex I and has a role in assisting the mitochondria to maintain its energy delivery during cell death. A1M may also, at the same time, counteract and eliminate the ROS generated by the mitochondrial respiration to prevent oxidative damage to surrounding healthy tissue.
  •  
8.
  • Happonen, Kaisa E, et al. (författare)
  • The Gas6-Axl Interaction Mediates Endothelial Uptake of Platelet Microparticles
  • 2016
  • Ingår i: Journal of Biological Chemistry. - 1083-351X. ; 291:20, s. 10586-10601
  • Tidskriftsartikel (refereegranskat)abstract
    • Upon activation, platelets release plasma-membrane derived microparticles (PMPs) exposing phosphatidylserine (PS) on their surface. The function and clearance mechanism of these MPs are incompletely understood. As they are pro-coagulant and potentially pro-inflammatory, rapid clearance from the circulation is essential for prevention of thrombotic diseases. The tyrosine kinase receptors Tyro3, Axl and Mer (TAMs) and their ligands protein S and Gas6 are involved in the uptake of PS-exposing apoptotic cells in macrophages and dendritic cells. Both TAMs and their ligands are expressed in the vasculature, the functional significance of which is poorly understood. In this study we investigated how vascular TAMs and their ligands may mediate endothelial uptake of PMPs. PMPs, generated from purified human platelets, were isolated by ultracentrifugation and labeled with biotin or PKH67. The uptake of labeled MPs in the presence of protein S and Gas6 in human aortic endothelial cells (HAEC) and human umbilical vein endothelial cells (HUVEC) was monitored by flow cytometry, western blotting and confocal/electron microscopy. We found that both endothelial cell types can phagocytose PMPs, and using TAM-blocking antibodies or siRNA knock-down of individual TAMs we show that the uptake is mediated by endothelial Axl and Gas6. As circulating PMPs-levels were not altered in Gas6-/- mice compared to Gas6+/+ mice, we hypothesize that the Gas6-mediated uptake is not a means to clear the bulk of circulating PMPs but may serve to phagocytose PMPs locally generated at sites of platelet activation and as a way to affect endothelial responses.
  •  
9.
  • Herwald, Heiko, et al. (författare)
  • Activation of the contact-phase system on bacterial surfaces - A clue to serious comlications in infections deseases
  • 1998
  • Ingår i: Nature Medicine. - : Springer Science and Business Media LLC. - 1078-8956 .- 1546-170X. ; 4:3, s. 298-302
  • Tidskriftsartikel (refereegranskat)abstract
    • Fever, hypotension and bleeding disorders are common symptoms of sepsis and septic shock. The activation of the contact-phase system is thought to contribute to the development of these severe disease states by triggering proinflammatory and procoagulatory cascades; however, the underlying molecular mechanisms are obscure. Here we report that the components of the contact-phase system are assembled on the surface of Escherichia coil and Salmonella through their specific interactions with fibrous bacterial surface proteins, curli and fimbriae. As a consequence, the proinflammatory pathway is activated through the release of bradykinin, a potent inducer of fever, pain and hypotension. Absorption of contact-phase proteins and fibrinogen by bacterial surface proteins depletes relevant coagulation factors and causes a hypocoagulatory state. Thus, the complex interplay of microbe surface proteins and host contact-phase factors may contribute to the symptoms of sepsis and septic shock.
  •  
10.
  • Herwald, Heiko, et al. (författare)
  • Zinc-dependent conformational changes in domain D5 of high molecular mass kininogen modulate contact activation
  • 2001
  • Ingår i: European Journal of Biochemistry. - : Wiley. - 0014-2956. ; 268:2, s. 396-404
  • Tidskriftsartikel (refereegranskat)abstract
    • Human high molecular mass kininogen (HK) participates as nonenzymatic cofactor in the contact system. Here, we show that recombinant domain D5 of HK (rD5) prolongs the clotting time of the intrinsic pathway of coagulation and attenuates the generation of bradykinin. Further studies indicate that a correct fold of domain D5 within HK is required for the activation of the contact system. The folding of rD5 seems to be modulated by the metal ions Zn2+, Ni2+, and Cu2+ as a specific antibody directed against the zinc-binding site in HK binds to HK and rD5 in a metal ion concentration dependent manner. The finding that these three metal ions specifically affect contact activation suggests that they regulate the accessibility of rD5 for negatively charged surfaces. Support for the assumption that the observed phenomena are due to conformational changes was obtained by fluorescence spectroscopy of rD5, demonstrating that its fluorescence spectrum was changed in the presence of ZnCl2. Moreover, negative staining electron microscopy experiments suggest that the zinc-induced changes in D5 also affect the conformation of the entire HK protein. The present data emphasize the role of zinc and other metal ions in the regulation of contact activation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 37

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy