SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "hsv:(MEDICIN OCH HÄLSOVETENSKAP) hsv:(Medicinska och farmaceutiska grundvetenskaper) hsv:(Cell och molekylärbiologi) ;pers:(Marko Varga György)"

Sökning: hsv:(MEDICIN OCH HÄLSOVETENSKAP) hsv:(Medicinska och farmaceutiska grundvetenskaper) hsv:(Cell och molekylärbiologi) > Marko Varga György

  • Resultat 1-10 av 27
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Niméus, Emma, et al. (författare)
  • Proteomic analysis identifies candidate proteins associated with distant recurrences in breast cancer after adjuvant chemotherapy.
  • 2007
  • Ingår i: Journal of Pharmaceutical and Biomedical Analysis. - : Elsevier BV. - 0731-7085. ; 43:3, s. 1086-1093
  • Tidskriftsartikel (refereegranskat)abstract
    • Breast cancer is a heterogenous disease and it is of importance to select patients with regard to different prognosis and treatment sensitivity to individualize treatment regimes. In this study we successfully adapted a protein extraction protocol from mRNA extracted tumor samples enabling two-dimensional gel electrophoresis (2-DE) analysis of samples previously analyzed by cDNA microarray. The aim was to find candidate proteins that distinguish breast cancer patients with or without recurrences after adjuvant CMF (cyclophosphamide, methotrexate and 5-FU) treatment within four years to follow-up. We identified several proteins distinguishing the recurrence group from the non-recurrence group, especially in the ER and PgR positive subgroup (n = 7). The induced proteins were involved in translation/folding, iron ion binding, and protease inhibition, whereas proteins involved in signaling, ubiquitination, and splicing were decreased in expression. These results show that it is possible to use 2-DE to separate high abundant proteins in breast cancer tissue and to find discriminating proteins to identify patients with different prognosis after adjuvant CMF treatment.
  •  
2.
  • Rezeli, Melinda, et al. (författare)
  • Quantitation of 87 Proteins by nLC-MRM/MS in Human Plasma : Workflow for Large-Scale Analysis of Biobank Samples
  • 2017
  • Ingår i: Journal of Proteome Research. - : AMER CHEMICAL SOC. - 1535-3893 .- 1535-3907. ; 16:9, s. 3242-3254
  • Tidskriftsartikel (refereegranskat)abstract
    • A multiple reaction monitoring (MRM) assay was developed for precise quantitation of 87 plasma proteins including the three isoforms of apolipoprotein E (APOE) associated with cardiovascular diseases using nanoscale liquid chromatography separation and stable isotope dilution strategy. The analytical performance of the assay was evaluated and we found an average technical variation of 4.7% in 4-5 orders of magnitude dynamic range (approximate to 0.2 mg/L to 4.5 g/L) from whole plasma digest. Here, we report a complete workflow, including sample processing adapted to 96-well plate format and normalization strategy for large-scale studies. To further investigate the MS-based quantitation the amount of six selected proteins was measured by routinely used clinical chemistry assays as well and the two methods showed excellent correlation with high significance (p-value < 10e-5) for the six proteins, in addition for the cardiovascular predictor factor, APOB: APOA1 ratio (r = 0.969, p-value < 10e-5). Moreover, we utilized the developed assay for screening of biobank samples from patients with myocardial infarction and performed the comparative analysis of patient groups with STEMI (ST- segment elevation myocardial infarction), NSTEMI (non ST- segment elevation myocardial infarction) and type-2 AMI (type-2 myocardial infarction) patients.
  •  
3.
  •  
4.
  • Nilsson, C. L., et al. (författare)
  • Use of ENCODE Resources to Characterize Novel Proteoforms and Missing Proteins in the Human Proteome
  • 2015
  • Ingår i: Journal of Proteome Research. - : American Chemical Society (ACS). - 1535-3893 .- 1535-3907. ; 14:2, s. 603-608
  • Tidskriftsartikel (refereegranskat)abstract
    • We describe the utility of integrated strategies that employ both translation of ENCODE data and major proteomic technology pillars to improve the identification of the "missing proteins", novel proteoforms, and PTMs. On one hand, databases in combination with bioinformatic tools are efficiently utilized to establish microarray-based transcript analysis and supply rapid protein identifications in clinical samples. On the other hand, sequence libraries are the foundation of targeted protein identification and quantification using mass spectrometric and immunoaffinity techniques. The results from combining proteoENCODEdb searches with experimental mass spectral data indicate that some alternative splicing forms detected at the transcript level are in fact translated to proteins. Our results provide a step toward the directives of the C-HPP initiative and related biomedical research.
  •  
5.
  • Kim, Dongyoung, et al. (författare)
  • FK506, an Immunosuppressive Drug, Induces Autophagy by Binding to the V-ATPase Catalytic Subunit A in Neuronal Cells
  • 2017
  • Ingår i: Journal of Proteome Research. - : American Chemical Society (ACS). - 1535-3893 .- 1535-3907. ; 16:1, s. 55-64
  • Tidskriftsartikel (refereegranskat)abstract
    • The drug FK506 (tacrolimus, fujimycin) exerts its immunosuppressive effects by regulating the nuclear factor of the activated T-cell (NFAT) family of transcription factors. However, FK506 also exhibits neuroprotective effects, but its direct target proteins that mediate these effects have not been determined. To identify the target proteins responsible for FK506's neuroprotective effects, the drug affinity responsive target stability (DARTS) method was performed using label-free FK506, and LC-MS/MS analysis of the FK506-treated proteome was also performed. Using DARTS and LC-MS/MS analyses in combination with reference studies, V-ATPase catalytic subunit A (ATP6V1A) was identified as a new target protein of FK506. The biological relevance of ATP6V1A in mediating the neuroprotective effects of FK506 was validated by analyzing FK506 activity with respect to autophagy via acridine orange staining and transcription factor EB (TFEB) translocation assay. These analyses demonstrated that the binding of FK506 with ATP6V1A induces autophagy by activating the translocation of TFEB from the cytosol into the nucleus. Because autophagy has been identified as a mechanism for treating neurodegenerative diseases and because we have demonstrated that FK506 induces autophagy, this study demonstrates that FK506 is a possible new therapy for treating neurodegenerative diseases.
  •  
6.
  • Diez, Paula, et al. (författare)
  • Integration of Proteomics and Transcriptomics Data Sets for the Analysis of a Lymphoma B-Cell Line in the Context of the Chromosome-Centric Human Proteome Project
  • 2015
  • Ingår i: Journal of Proteome Research. - : American Chemical Society (ACS). - 1535-3893 .- 1535-3907. ; 14:9, s. 3530-3540
  • Tidskriftsartikel (refereegranskat)abstract
    • A comprehensive study of the molecular active landscape of human cells can be undertaken to integrate two different but complementary perspectives: transcriptomics, and proteomics. After the genome era, proteomics has emerged as a powerful tool to simultaneously identify and characterize the compendium of thousands of different proteins active in a cell. Thus, the Chromosome-centric Human Proteome Project (C-HPP) is promoting a full characterization of the human proteome combining high-throughput proteomics with the data derived from genome-wide expression profiling of protein-coding genes. Here we present a full proteomic profiling of a human lymphoma B-cell line (Ramos) performed using a nanoUPLC-LTQ-Orbitrap Velos proteomic platform, combined to an in-depth transcriptomic profiling of the same cell type. Data are available via ProteomeXchange with identifier PXD001933. Integration of the proteomic and transcriptomic data sets revealed a 94% overlap in the proteins identified by both -omics approaches. Moreover, functional enrichment analysis of the proteomic profiles showed an enrichment of several functions directly related to the biological and morphological characteristics of B-cells. In turn, about 30% of all protein-coding genes present in the whole human genome were identified as being expressed by the Ramos cells (stable average of 30% genes along all the chromosomes), revealing the size of the protein expression-set present in one specific human cell type. Additionally, the identification of missing proteins in our data sets has been reported, highlighting the power of the approach. Also, a comparison between neXtProt and UniProt database searches has been performed. In summary, our transcriptomic and proteomic experimental profiling provided a high coverage report of the expressed proteome from a human lymphoma B-cell type with a clear insight into the biological processes that characterized these cells. In this way, we demonstrated the usefulness of combining -omics for a comprehensive characterization of specific biological systems.
  •  
7.
  • Fehniger, Thomas E, et al. (författare)
  • Exploring the context of the lung proteome within the airway mucosa following allergen challenge.
  • 2004
  • Ingår i: Journal of Proteome Research. - : American Chemical Society (ACS). - 1535-3893 .- 1535-3907. ; 3:2, s. 307-320
  • Forskningsöversikt (refereegranskat)abstract
    • The lung proteome is a dynamic collection of specialized proteins related to pulmonary function. Many cells of different derivations, activation states, and levels of maturity contribute to the changing environment, which produces the lung proteome. Inflammatory cells reacting to environmental challenge, for example from allergens, produce and secrete proteins which have profound effects on both resident and nonresident cells located in airways, alveoli, and the vascular tree which provides blood cells to the parenchyma alveolar bed for gas exchange. In an experimental model of allergic airway inflammation, we have compared control and allergen challenged lung compartments to determine global protein expression patterns using 2D-gel electrophoresis and subsequent spot identification by MS/MS mass spectrometry. We have then specifically isolated the epithelial mucosal layer, which lines conducting airways, from control and allergen challenged lungs, using laser capture technology and performed proteome identification on these selected cell samples. A central component of our investigations has been to contextually relate the histological features of the dynamic pulmonary environment to the changes in protein expression observed following challenge. Our results provide new information of the complexity of the submucosa/epithelium interface and the mechanisms behind the transformation of airway epithelium from normal steady states to functionally activated states.
  •  
8.
  • Gidlöf, Olof, et al. (författare)
  • Proteomic profiling of extracellular vesicles reveals additional diagnostic biomarkers for myocardial infarction compared to plasma alone
  • 2019
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Extracellular vesicles (EVs) are submicron, membrane-enclosed particles that are released from cells in various pathophysiological states. The molecular cargo of these vesicles is considered to reflect the composition of the cell of origin, and the EV proteome is therefore a potential source of biomarkers for various diseases. Our aim was to determine whether EVs isolated from plasma provide additional diagnostic value or improved pathophysiological understanding compared to plasma alone in the context of myocardial infarction (MI). A panel of proximity extension assays (n = 92) was employed to analyze EV lysates and plasma from patients with MI (n = 60) and healthy controls (n = 22). After adjustment for multiple comparisons, a total of 11 dysregulated proteins were identified in EVs of MI patients compared to the controls (q < 0.01). Three of these proteins: chymotrypsin C (CTRC), proto-oncogene tyrosine-protein kinase SRC (SRC) and C-C motif chemokine ligand 17 (CCL17) were unaltered in the corresponding plasma samples. As biomarkers for MI, rudimentary to no evidence exists for these proteins. In a separate group of patients with varying degrees of coronary artery disease, the decrease in EV-associated (but not plasma-related) SRC levels was confirmed by ELISA. Confirmation of the presence of SRC on EVs of different sizes and cellular origins was performed with ELISA, flow cytometry and nanoparticle tracking analysis. In conclusion, the data revealed that despite a similarity in the EV and plasma proteomes, analysis of isolated EVs does indeed provide additional diagnostic information that cannot be obtained from plasma alone.
  •  
9.
  • Gil, Jeovanis, et al. (författare)
  • Clinical protein science in translational medicine targeting malignant melanoma
  • 2019
  • Ingår i: Cell Biology and Toxicology. - : Springer Science and Business Media LLC. - 0742-2091 .- 1573-6822. ; 35:4, s. 293-332
  • Tidskriftsartikel (refereegranskat)abstract
    • Melanoma of the skin is the sixth most common type of cancer in Europe and accounts for 3.4% of all diagnosed cancers. More alarming is the degree of recurrence that occurs with approximately 20% of patients lethally relapsing following treatment. Malignant melanoma is a highly aggressive skin cancer and metastases rapidly extend to the regional lymph nodes (stage 3) and to distal organs (stage 4). Targeted oncotherapy is one of the standard treatment for progressive stage 4 melanoma, and BRAF inhibitors (e.g. vemurafenib, dabrafenib) combined with MEK inhibitor (e.g. trametinib) can effectively counter BRAFV600E-mutated melanomas. Compared to conventional chemotherapy, targeted BRAFV600E inhibition achieves a significantly higher response rate. After a period of cancer control, however, most responsive patients develop resistance to the therapy and lethal progression. The many underlying factors potentially causing resistance to BRAF inhibitors have been extensively studied. Nevertheless, the remaining unsolved clinical questions necessitate alternative research approaches to address the molecular mechanisms underlying metastatic and treatment-resistant melanoma. In broader terms, proteomics can address clinical questions far beyond the reach of genomics, by measuring, i.e. the relative abundance of protein products, post-translational modifications (PTMs), protein localisation, turnover, protein interactions and protein function. More specifically, proteomic analysis of body fluids and tissues in a given medical and clinical setting can aid in the identification of cancer biomarkers and novel therapeutic targets. Achieving this goal requires the development of a robust and reproducible clinical proteomic platform that encompasses automated biobanking of patient samples, tissue sectioning and histological examination, efficient protein extraction, enzymatic digestion, mass spectrometry–based quantitative protein analysis by label-free or labelling technologies and/or enrichment of peptides with specific PTMs. By combining data from, e.g. phosphoproteomics and acetylomics, the protein expression profiles of different melanoma stages can provide a solid framework for understanding the biology and progression of the disease. When complemented by proteogenomics, customised protein sequence databases generated from patient-specific genomic and transcriptomic data aid in interpreting clinical proteomic biomarker data to provide a deeper and more comprehensive molecular characterisation of cellular functions underlying disease progression. In parallel to a streamlined, patient-centric, clinical proteomic pipeline, mass spectrometry–based imaging can aid in interrogating the spatial distribution of drugs and drug metabolites within tissues at single-cell resolution. These developments are an important advancement in studying drug action and efficacy in vivo and will aid in the development of more effective and safer strategies for the treatment of melanoma. A collaborative effort of gargantuan proportions between academia and healthcare professionals has led to the initiation, establishment and development of a cutting-edge cancer research centre with a specialisation in melanoma and lung cancer. The primary research focus of the European Cancer Moonshot Lund Center is to understand the impact that drugs have on cancer at an individualised and personalised level. Simultaneously, the centre increases awareness of the relentless battle against cancer and attracts global interest in the exceptional research performed at the centre.
  •  
10.
  • Hallgren, Oskar, et al. (författare)
  • Splicosomal and serine and arginine-rich splicing factors as targets for TGF-β
  • 2012
  • Ingår i: Fibrogenesis & tissue repair. - : Springer Science and Business Media LLC. - 1755-1536. ; 5:1, s. 6-6
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Transforming growth factor-β1 (TGF-β1) is a potent regulator of cell growth and differentiation. TGF-β1 has been shown to be a key player in tissue remodeling processes in a number of disease states by inducing expression of extracellular matrix proteins. In this study a quantitative proteomic analysis was undertaken to investigate if TGF-β1 contributes to tissue remodeling by mediating mRNA splicing and production of alternative isoforms of proteins.METHODOLOGY/PRINCIPAL FINDINGS: The expression of proteins involved in mRNA splicing from TGF-β1-stimulated lung fibroblasts was compared to non-stimulated cells by employing isotope coded affinity tag (ICATTM) reagent labeling and tandem mass spectrometry. A total of 1733 proteins were identified and quantified with a relative standard deviation of 11% +/- 8 from enriched nuclear fractions. Seventy-six of these proteins were associated with mRNA splicing, including 22 proteins involved in splice site selection. In addition, TGF-β1 was observed to alter the relative expression of splicing proteins that may be important for alternative splicing of fibronectin. Specifically, TGF-β1 significantly induced expression of SRp20, and reduced the expression of SRp30C, which has been suggested to be a prerequisite for generation of alternatively spliced fibronectin. The induction of SRp20 was further confirmed by western blot and immunofluorescence.CONCLUSIONS: The results show that TGF-β1 induces the expression of proteins involved in mRNA splicing and RNA processing in human lung fibroblasts. This may have an impact on the production of alternative isoforms of matrix proteins and can therefore be an important factor in tissue remodeling and disease progression.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 27
Typ av publikation
tidskriftsartikel (25)
forskningsöversikt (2)
Typ av innehåll
refereegranskat (27)
Författare/redaktör
Malmström, Johan (14)
Westergren-Thorsson, ... (12)
Tufvesson, Ellen (6)
Rezeli, Melinda (6)
Olsson, Håkan (2)
visa fler...
Hallgren, Oskar (2)
Baldetorp, Bo (2)
LaBaer, Joshua (2)
Erlinge, David (2)
Malm, Johan (2)
Welinder, Charlotte (2)
Kim, Yonghyo (2)
Szasz, A. Marcell (2)
Appelqvist, Roger (2)
Sanchez, Aniel (2)
Löfdahl, Claes-Göran (2)
Andersson Sjöland, A ... (2)
Hansson, Lennart (2)
Ingvar, Christian (2)
Eriksson, Jonatan (2)
Bjermer, Leif (1)
Fernö, Mårten (1)
Vegvari, Akos (1)
Corrales, Fernando J ... (1)
Nogueira, Fabio C.S. (1)
Domont, Gilberto B. (1)
Hober, Sophia (1)
Laurell, Thomas (1)
Kokaia, Zaal (1)
Nimeus, Emma (1)
Andrén, Per E. (1)
Lindahl, Bertil, 195 ... (1)
Jernberg, Tomas (1)
Megyesfalvi, Zsolt (1)
Perez-Riverol, Yasse ... (1)
Woldmar, Nicole (1)
Pizzatti, Luciana (1)
Kárpáti, Sarolta (1)
Evander, Mikael (1)
Gouras, Gunnar K. (1)
Johnsson, Anders (1)
Nihlberg, Kristian (1)
Fuentes, Manuel (1)
Jönsson, Göran (1)
Schadendorf, Dirk (1)
Martinsson, Isak (1)
Klementieva, Oxana (1)
Collin, Anna (1)
Roybon, Laurent (1)
visa färre...
Lärosäte
Lunds universitet (27)
Uppsala universitet (2)
Göteborgs universitet (1)
Kungliga Tekniska Högskolan (1)
Karolinska Institutet (1)
Språk
Engelska (27)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (27)
Naturvetenskap (1)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy