SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "hsv:(MEDICIN OCH HÄLSOVETENSKAP) hsv:(Medicinska och farmaceutiska grundvetenskaper) hsv:(Farmakologi och toxikologi) ;lar1:(liu)"

Sökning: hsv:(MEDICIN OCH HÄLSOVETENSKAP) hsv:(Medicinska och farmaceutiska grundvetenskaper) hsv:(Farmakologi och toxikologi) > Linköpings universitet

  • Resultat 1-10 av 315
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Di Gennaro, A., et al. (författare)
  • Cysteinyl leukotriene receptor 1 antagonism prevents experimental abdominal aortic aneurysm
  • 2018
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 115:8, s. 1907-1912
  • Tidskriftsartikel (refereegranskat)abstract
    • Cysteinyl-leukotrienes (cys-LTs) are 5-lipoxygenase-derived lipid mediators involved in the pathogenesis and progression of inflammatory disorders, in particular asthma. We have previously found evidence linking these mediators to increased levels of proteolytic enzymes in tissue specimens of human abdominal aortic aneurysm (AAA). Here we show that antagonism of the CysLT1 receptor by montelukast, an established antiasthma drug, protects against a strong aorta dilatation (>50% increase = aneurysm) in a mouse model of CaCl2-induced AAA at a dose comparable to human medical practice. Analysis of tissue extracts revealed that montelukast reduces the levels of matrix metalloproteinase-9 (MMP-9) and macrophage inflammatory protein-1 alpha (MIP-1 alpha) in the aortic wall. Furthermore, aneurysm progression was specifically mediated through CysLT1 signaling since a selective CysLT2 antagonist was without effect. A significantly reduced vessel dilatation is also observed when treatment with montelukast is started days after aneurysm induction, suggesting that the drug not only prevents but also stops and possibly reverts an already ongoing degenerative process. Moreover, montelukast reduced the incidence of aortic rupture and attenuated the AAA development in two additional independent models, i.e., angiotensin II- and porcine pancreatic elastase-induced AAA, respectively. Our results indicate that cys-LTs are involved in the pathogenesis of AAA and that antagonism of the CysLT1 receptor is a promising strategy for preventive and therapeutic treatment of this clinically silent and highly lethal disease.
  •  
2.
  • Fritz, Michael, 1981-, et al. (författare)
  • Interferon-ɣ mediated signaling in the brain endothelium is critical for inflammation-induced aversion
  • 2018
  • Ingår i: Brain, behavior, and immunity. - Maryland Heights : Academic Press. - 0889-1591 .- 1090-2139. ; 67, s. 54-58
  • Tidskriftsartikel (refereegranskat)abstract
    • Systemic inflammation elicits malaise and a negative affective state. The mechanism underpinning the aversive component of inflammation include cerebral prostaglandin synthesis and modulation of dopaminergic reward circuits, but the messengers that mediate the signaling between the peripheral inflammation and the brain have not been sufficiently characterized. Here we investigated the role of interferon-ɣ (IFN-ɣ) in the aversive response to systemic inflammation induced by a low dose (10μg/kg) of lipopolysaccharide (LPS) in mice. LPS induced IFN-ɣ expression in the blood and deletion of IFN-ɣ or its receptor prevented the development of conditioned place aversion to LPS. LPS induced expression of the chemokine Cxcl10 in the striatum of normal mice, but this induction was absent in mice lacking IFN-ɣ receptors or Myd88 in blood brain barrier endothelial cells. Furthermore, inflammation-induced aversion was blocked in mice lacking Cxcl10 or its receptor Cxcr3. Finally, mice with a selective deletion of the IFN-ɣ receptor in brain endothelial cells did not develop inflammation-induced aversion, demonstrating that the brain endothelium is the critical site of IFN-ɣ action. Collectively, these findings show that circulating IFN-ɣ that binds to receptors on brain endothelial cells and induces Cxcl10, is a central link in the signaling chain eliciting inflammation-induced aversion.
  •  
3.
  • Klawonn, Anna, 1985- (författare)
  • Molecular Mechanisms of Reward and Aversion
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Various molecular pathways in the brain shape our understanding of good and bad, as well as our motivation to seek and avoid such stimuli. This work evolves around how systemic inflammation causes aversion; and why general unpleasant states such as sickness, stress, pain and nausea are encoded by our brain as undesirable; and contrary to these questions, how drugs of abuse can subjugate the motivational neurocircuitry of the brain. A common feature of these various disease states is involvement of the motivational neurocircuitry - from mesolimbic to striatonigral pathways. Having an intact motivational system is what helps us evade negative outcomes and approach natural positive reinforcers, which is essential for our survival. During disease-states the motivational neurocircuitry may be overthrown by the molecular mechanisms that originally were meant to aid us.In study I, to investigate how inflammation is perceived as aversive, we used a behavioral test based on Pavlovian place conditioning with the aversive inflammatory stimulus E. coli lipopolysaccharide (LPS). Using a combination of cell-type specific gene deletions, pharmacology, and chemogenetics, we uncovered that systemic inflammation triggered aversion by MyD88-dependent activation of the brain endothelium followed by COX1-mediated cerebral prostaglandin E2 (PGE2) synthesis. Moreover, we showed that inflammation-induced PGE2 targeted EP1 receptors on striatal dopamine D1 receptor–expressing neurons and that this signaling sequence induced aversion through GABA-mediated inhibition of dopaminergic cells. Finally, inflammation-induced aversion was not an indirect consequence of fever or anorexia but constituted an independent inflammatory symptom triggered by a unique molecular mechanism. Collectively, these findings demonstrate that PGE2-mediated modulation of the dopaminergic circuitry is a key mechanism underlying inflammation-induced aversion.In study II, we investigate the role of peripheral IFN-γ in LPS induced conditioned place aversion by employing a strategy based on global and cell-type specific gene deletions, combined with measures of gene-expression. LPS induced IFN-ɣ expression in the blood, and deletion of IFN-ɣ or its receptor prevented conditioned place aversion (CPA) to LPS. LPS increased the expression of chemokine Cxcl10 in the striatum of normal mice. This induction was absent in mice lacking IFN-ɣ receptors or Myd88 in blood brain barrier endothelial cells. Furthermore, inflammation-induced aversion was blocked in mice lacking Cxcl10 or its receptor Cxcr3. Finally, mice with a selective deletion of the IFN-ɣ receptor in brain endothelial cells did not develop inflammation-induced aversion. Collectively, these findings demonstrate that circulating IFN-ɣ binding to receptors on brain endothelial cells which induces Cxcl10, is a central link in the signaling chain eliciting inflammation-induced aversion.In study III, we explored the role of melanocortin 4 receptors (MC4Rs) in aversive processing using genetically modified mice in CPA to various stimuli. In normal mice, robust aversions were induced by systemic inflammation, nausea, pain and kappa opioid receptor-induced dysphoria. In sharp contrast, mice lacking MC4Rs displayed preference towards most of the aversive stimuli, but were indifferent to pain. The unusual flip from aversion to reward in mice lacking MC4Rs was dopamine-dependent and associated with a change from decreased to increased activity of the dopamine system. The responses to aversive stimuli were normalized when MC4Rs were re-expressed on dopamine D1 receptor-expressing cells or in the striatum of mice otherwise lacking MC4Rs. Furthermore, activation of arcuate nucleus proopiomelanocortin neurons projecting to the ventral striatum increased the activity of striatal neurons in a MC4R-dependent manner and elicited aversion. Our findings demonstrate that melanocortin signaling through striatal MC4Rs is critical for assigning negative motivational valence to harmful stimuli.The neurotransmitter acetylcholine has been implied in reward learning and drug addiction. However, the role of cholinergic receptor subtypes in such processes remains elusive. In study IV we investigated the function of muscarinic M4Rs on dopamine D1R expressing neurons and acetylcholinergic neurons, using transgenic mice in various reward-enforced behaviors and in a “waiting”-impulsivity test. Mice lacking M4-receptors from D1-receptor expressing neurons exhibited an escalated reward seeking phenotype towards cocaine and natural reward, in Pavlovian conditioning and an operant self-administration task, respectively. In addition, the M4-D1RCre mice showed impaired waiting impulsivity in the 5-choice-serial-reaction-time-task. On the contrary, mice without M4Rs in acetylcholinergic neurons were unable to learn positive reinforcement to natural reward and cocaine, in an operant runway paradigm and in Pavlovian conditioning.  Immediate early gene expression mirrored the behavioral findings arising from M4R-D1R knockout, as cocaine induced cFos and FosB was significantly increased in the forebrain of M4-D1RCre mice, whereas it remained normal in the M4R-ChatCre mice. Our study illustrates that muscarinic M4Rs on specific neural populations, either cholinergic or D1R-expressing, are pivotal for learning processes related to both natural reward and drugs of abuse, with opposing functionality.
  •  
4.
  • Boknäs, Niklas, 1979- (författare)
  • Studies on interfaces between primary and secondary hemostasis
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Our conceptual understanding of hemostasis is still heavily influenced by outdated experimental models wherein the hemostatic activity of platelets and coagulation factors are understood and studied in isolation. Although perhaps convenient for researchers and clinicians, this reductionist view is negated by an ever increasing body of evidence pointing towards an intimate relationship between the two phases of hemostasis, marked by strong interdependence. In this thesis, I have focused on factual and proposed interfaces between primary and secondary hemostasis, and on how these interfaces can be studied.In my first project, we zoomed in on the mechanisms behind the well-known phenomenon of thrombin-induced platelet activation, an important event linking secondary to primary hemostasis. In our study, we examined how thrombin makes use of certain domains for high-affinity binding to substrates, called exosite I and II, to activate platelets via PAR4. We show that thrombin-induced platelet activation via PAR4 is critically dependent on exosite II, and that blockage of exosite II with different substances virtually eliminates PAR4 activation. Apart from providing new insights into the mechanisms by which thrombin activates PAR4, these results expand our knowledge of the antithrombotic actions of various endogenous proteins such as members of the serpin superfamily, which inhibit interactions with exosite II. Additionally, we show that inhibition of exosite II could be a feasible pharmacological strategy for achieving selective blockade of PAR4.In my second project, we examined the controversial issue of whether platelets can initiate the coagulation cascade by means of contact activation, a hypothesis which, if true, could provide a direct link between primary and secondary hemostasis. In contrast to previous results, our findings falsify this hypothesis, and show that some of the erroneous conclusions drawn from earlier studies can be explained by inappropriate experimental models unsuitable for the study of plateletcoagulation interfaces.My third project comprised an assessment of the methodological difficulties encountered when trying to measure the ability of platelets to initiate secondary hemostasis by the release of microparticles expressing tissue factor. Our study shows that the functional assays available for this purpose are highly susceptible to error caused by artificial contact activation. These results could help to improve the methodology of future research and thus pave the way for new insights into the roles of tissue factor-bearing microparticles in the pathophysiology of various thrombotic disorders.From a personal perspective, my PhD project has been a fascinating scientific odyssey into the largely unexplored interfaces between primary and secondary hemostasis. Looking forward, my ambition is to continue our work exploring platelet-coagulation interactions and to translate these insights into clinically meaningful information, which may someday improve the treatment of patients with bleeding and/or thrombosis.
  •  
5.
  • De Basso, Rachel, et al. (författare)
  • Increased carotid plaque burden in men with the fibrillin-1 2/3 genotype
  • 2014
  • Ingår i: Clinical and Experimental Pharmacology and Physiology. - : Wiley. - 1440-1681 .- 0305-1870. ; 41:9, s. 637-642
  • Tidskriftsartikel (refereegranskat)abstract
    • Fibrillin-1 (FBN1) is an important constituent of the vascular wall and earlier studies have indicated an effect of the FBN1 2/3 genotype on blood pressure as well as aortic stiffness in men. The aim of the present study was to determine whether the FBN1 2/3 genotype was associated with the presence of carotid plaque and incident cardiovascular morbidity and mortality in middle-aged subjects. The FBN1 genotype was characterized in 5765 subjects (2424 men, 3341 women; age 45-69years) recruited from the Malmo Diet and Cancer Study Cardiovascular Cohort, Sweden. Plaque occurrence and intima-media thickness (IMT) of the carotid artery were assessed by ultrasound. The incidence of first cardiovascular events (myocardial infarction and stroke) and cause-specific mortality were monitored over a mean follow-up period of 13.2years. The most common FBN1 genotypes were 2/2, 2/3 and 2/4, which accounted for 92.2% (n=5317) of subjects. There were no differences between the three genotypes regarding age, blood pressure, glucose, lipids, smoking habits, common carotid artery diameter and intima-media thickness in men and women. The presence of plaque in the carotid artery was higher in men with the 2/3 genotype compared with the 2/2 and 2/4 genotypes (55% vs 46% and 50%, respectively; P=0.007). No similar differences were observed in women. No significant relationship was observed between FBN1 genotypes and the incidence of cardiovascular disease or all-cause mortality. The increased prevalence of plaque in the carotid artery of middle-aged men with the FBN1 2/3 genotype indicates pathological arterial wall remodelling with a more pronounced atherosclerotic burden.
  •  
6.
  • Gomez-Pinilla, Pedro J, et al. (författare)
  • Melatonin restores impaired contractility in aged guinea pig urinary bladder
  • 2008
  • Ingår i: Journal of Pineal Research. - : Blackwell Publishing Ltd. - 1600-079X .- 0742-3098. ; 44:4, s. 416-425
  • Tidskriftsartikel (refereegranskat)abstract
    • Urinary bladder disturbances are frequent in the elderly population but the responsible mechanisms are poorly understood. This study evaluates the effects of aging on detrusor myogenic contractile responses and the impact of melatonin treatment. The contractility of bladder strips from adult, aged and melatonin-treated guinea pigs was evaluated by isometric tension recordings. Cytoplasmatic calcium concentration ([Ca2+](i)) was estimated by epifluorescence microscopy of fura-2-loaded isolated detrusor smooth muscle cells, and the levels of protein expression and phosphorylation were quantitated by Western blotting. Aging impairs the contractile response of detrusor strips to cholinergic and purinergic agonists and to membrane depolarization. The impaired contractility correlates with increased [Ca2+](i) in response to the stimuli, suggesting a reduced Ca(2+)sensitivity. Indeed, the agonist-induced contractions in adult strips were sensitive to blockade with Y27362, an inhibitor of Rho kinase (ROCK) and GF109203X, an inhibitor of protein kinase C (PKC), but these inhibitors had negligible effects in aged strips. The reduced Ca2+ sensitivity in aged tissues correlated with lower levels of RhoA, ROCK, PKC and the two effectors CPI-17 and MYPT1, and with the absence of CPI-17 and MYPT1 phosphorylation in response to agonists. Interestingly, melatonin treatment restored impaired contractility via normalization of Ca2+ handling and Ca2+ sensitizations pathways. Moreover, the indoleamine restored age-induced changes in oxidative stress and mitochondrial polarity. These results suggest that melatonin might be a novel therapeutic tool to palliate aging-related urinary bladder contractile impairment.
  •  
7.
  • Aziz, Abdul Maruf Asif (författare)
  • Neuropeptide Receptors as Treatment Targets in Alcohol Use Disorders
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Alcohol use disorder (AUD) is a complex disorder with multiple pathophysiological processes contributing to the initiation, progression and development of the disease state. AUD is a chronic relapsing disease with escalation of alcohol-intake over time in repeated cycles of tolerance, abstinence and relapse and hence, it is very difficult to treat. There are only a few currently available treatments with narrow efficacy and variable patient response. Thus it is important to find new, more effective medications to increase the number of patients who can benefit from pharmacological treatment of AUD.The research presented in this thesis work focuses on the critical involvement of central neuropeptides in alcohol-related behaviors. The overall aim was to evaluate the nociceptin/orphanin FQ (NOP) receptor, the neuropeptide Y (NPY) Y2 receptor and the melanin-concentrating hormone (MCH) receptor 1 as novel and potential pharmacological treatment targets for AUD by testing the NOP receptor agonist SR-8993, the NPY-Y2 receptor antagonist CYM-9840 and the MCH1 receptor antagonist GW803430 in established animal models.In the first study (Paper I), the novel and selective NOP agonist SR-8993 was assessed in rat models of motivation to obtain alcohol and relapse to alcohol seeking behavior using the operant self-administration (SA) paradigm. Firstly, treatment with SR-8993 (1 mg/kg) showed a mildly anxiolytic effect and reversed acute alcohol withdrawal-induced “hangover” anxiety in the elevated plus-maze (EPM). Next, it potently attenuated alcohol SA and motivation to obtain alcohol in the progressive ratio responding (PRR) and reduced both alcohol cue-induced and yohimbine stress-induced reinstatement of alcohol seeking, without affecting the pharmacology and metabolism of alcohol nor other control behaviors. To extend these findings, SR-8993 was evaluated in escalated alcohol-intake in rats.  Treatment with SR-8993 significantly suppressed alcohol-intake and preference in rats that were trained to consume high amounts of alcohol in the two-bottle free choice intermittent access (IA) paradigm. SR-8993 also blocked operant SA of alcohol in rats that showed robust escalation in operant alcohol SA following chronic IA exposure to alcohol.In the second study (Paper II), SR-8993 was further evaluated in a model for escalated alcohol-intake induced by long-term IA exposure to alcohol. The effect of previous experience on operant alcohol SA on two-bottle free choice preference drinking was evaluated and sensitivity to treatment with SR-8993 was tested in rats selected for escalated and non-escalated alcohol seeking behavior. We found that rats exposed to the combined SA-IA paradigm showed greater sensitivity to SR-8993 treatment. In addition, acute escalation of alcohol SA after a three-week period of abstinence was completely abolished by pretreatment with SR-8993.In the third study (Paper III), the effects of the novel, small molecule NPY-Y2 antagonist CYM-9840 were tested in operant alcohol SA, PRR which is a model for motivation to work for alcohol and reinstatement of alcohol-seeking behavior. Treatment with CYM-9840 (10 mg/kg) potently attenuated alcohol SA, progressive ratio responding and stress-induced reinstatement using yohimbine as the stressor, while alcohol cue-induced reinstatement was unaffected. Moreover, a range of control behaviors including taste sensitivity, locomotor and pharmacological sensitivity to the sedative effects of alcohol remained unaffected by CYM-9840 pretreatment, indicating that its effects are specific to the rewarding and motivational aspects of alcohol-intake and related behaviors. CYM-9840 also reversed acute alcohol withdrawal-induced “hangover” anxiety measured in the EPM and reduced alcohol-intake in the 4 hour limited access two-bottle free choice preference drinking model.Finally, in the fourth study (Paper IV), the selective MCH1-R antagonist GW803430 was tested in rat models of escalated alcohol-intake. Pretreatment with GW803430 (effective at 10 & 30 mg/kg) dose-dependently reduced alcohol and food-intake in rats that consumed high amounts of alcohol during IA, while it only decreased food-intake in rats that consumed low amounts of alcohol during IA, likely due to a floor effect. Upon protracted abstinence following IA, GW803430 significantly reduced operant alcohol SA and this was associated with adaptations in MCH and MCH1-R gene-expression. In contrast, GW803430 did not affect escalated alcohol SA induced by chronic alcohol vapor exposure and this was accompanied by no change in MCH or MCH1-R gene expression. Overall, these results suggest that the MCH1-R antagonist affects alcohol-intake through regulation of both motivation for caloric-intake and the rewarding properties of alcohol.In conclusion, our results suggest critical roles for these central neuropeptides in the regulation of anxiety and of alcohol reward, making them potential pharmacological targets in the treatment of AUD.
  •  
8.
  • Björn, Niclas, et al. (författare)
  • Genes and variants in hematopoiesis-related pathways are associated with gemcitabine/carboplatin-induced thrombocytopenia
  • 2020
  • Ingår i: The Pharmacogenomics Journal. - : Nature Publishing Group. - 1470-269X .- 1473-1150. ; 20:2, s. 179-191
  • Tidskriftsartikel (refereegranskat)abstract
    • Chemotherapy-induced myelosuppression, including thrombocytopenia, is a recurrent problem during cancer treatments that may require dose alterations or cessations that could affect the antitumor effect of the treatment. To identify genetic markers associated with treatment-induced thrombocytopenia, we whole-exome sequenced 215 non-small cell lung cancer patients homogeneously treated with gemcitabine/carboplatin. The decrease in platelets (defined as nadir/baseline) was used to assess treatment-induced thrombocytopenia. Association between germline genetic variants and thrombocytopenia was analyzed at single-nucleotide variant (SNV) (based on the optimal false discovery rate, the severity of predicted consequence, and effect), gene, and pathway levels. These analyses identified 130 SNVs/INDELs and 25 genes associated with thrombocytopenia (P-value < 0.002). Twenty-three SNVs were validated in an independent genome-wide association study (GWAS). The top associations include rs34491125 in JMJD1C (P-value = 9.07 × 10−5), the validated variants rs10491684 in DOCK8 (P-value = 1.95 × 10−4), rs6118 in SERPINA5 (P-value = 5.83 × 10−4), and rs5877 in SERPINC1 (P-value = 1.07 × 10−3), and the genes CAPZA2 (P-value = 4.03 × 10−4) and SERPINC1 (P-value = 1.55 × 10−3). The SNVs in the top-scoring pathway “Factors involved in megakaryocyte development and platelet production” (P-value = 3.34 × 10−4) were used to construct weighted genetic risk score (wGRS) and logistic regression models that predict thrombocytopenia. The wGRS predict which patients are at high or low toxicity risk levels, for CTCAE (odds ratio (OR) = 22.35, P-value = 1.55 × 10−8), and decrease (OR = 66.82, P-value = 5.92 × 10−9). The logistic regression models predict CTCAE grades 3–4 (receiver operator characteristics (ROC) area under the curve (AUC) = 0.79), and large decrease (ROC AUC = 0.86). We identified and validated genetic variations within hematopoiesis-related pathways that provide a solid foundation for future studies using genetic markers for predicting chemotherapy-induced thrombocytopenia and personalizing treatments.
  •  
9.
  • Björn, Niclas, 1990- (författare)
  • Pharmacogenetic biomarkers for chemotherapy-induced adverse drug reactions
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Cancer is a serious disease expected to be the world-leading cause of death in the 21st century. The use of harsh chemotherapies is motivated and accepted but, unfortunately, is often accompanied by severe toxicity and adverse drug reactions (ADRs). These occur because the classical chemotherapies’ common modes of action effectively kill and/or reduce the growth rate not only of tumour cells, but also of many other rapidly dividing healthy cells in the body. There are also considerable interindividual differences in ADRs, even between patients with similar cancers and disease stage treated with equal doses; some experience severe to life-threatening ADRs after one dose, leading to treatment delays, adjustments, or even discontinuation resulting in suboptimal treatment, while others remain unaffected through all treatment cycles. Being able to predict which patients are at high or low risk of ADRs, and to adjust doses accordingly before treatment, would probably decrease toxicity and patient suffering while also increasing treatment tolerability and effects. In this thesis, we have used next-generation sequencing (NGS) and bioinformatics for the prediction of myelosuppressive ADRs in lung and ovarian cancer patients treated with gemcitabine/carboplatin and paclitaxel/carboplatin.Paper I shows that ABCB1 and CYP2C8 genotypes have small effects inadequate for stratification of paclitaxel/carboplatin toxicity. This supports the transition to whole-exome sequencing (WES) and whole-genome sequencing (WGS). Papers II and IV, respectively, use WES and WGS, and demonstrate that genetic variation in or around genes involved in blood cell regulation and proliferation, or genes differentially expressed at chemotherapy exposure, can be used in polygenic prediction models for stratification of gemcitabine/carboplatininduced myelosuppression. Paper III reassuringly shows that WES and WGS are concordant and mostly yield comparable genotypes across the exome. Paper V proves that single-cell RNA sequencing of hematopoietic stem cells is a feasible method for elucidating differential transcriptional effects induced as a response to in vitro chemotherapy treatment.In conclusion, our results supports the transition to genome-wide approaches using WES, WGS, and RNA sequencing to establish polygenic models that combine effects of multiple pharmacogenetic biomarkers for predicting chemotherapy-induced ADRs. This approach could be applied to improve risk stratification and our understanding of toxicity and ADRs related to other drugs and diseases. We hope that our myelosuppression prediction models can be refined and validated to facilitate personalized treatments, leading to increased patient wellbeing and quality of life.
  •  
10.
  • Ljunggren, Stefan, 1988- (författare)
  • Lipoproteomics : Environmental and Genetic Factors Affecting High-Density Lipoprotein (HDL)
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Lipoprotein particles act as lipid transporters in the blood stream, and measuring cholesterol content in specific subclasses of lipoprotein particles has long been, and still is, a frequently used tool to estimate the risk of cardiovascular disease (CVD). High-density lipoprotein (HDL) is a subclass of lipoproteins often regarded as providing protection against CVD via several functions including reverse cholesterol transport and anti-inflammatory capacities. However, the precise relationship between HDL cholesterol levels and health outcome is still unclear. Lately, new approaches to study HDL composition and function have therefore become more important.HDL function is to a large extent dependent on its proteome, containing more than 100 proteins. Investigating the proteome in individuals with altered gene expression for HDL-associated proteins or with known exposure to environmental contaminants may reveal new insights into how HDL metabolism is affected by various factors. This is of interest in order to better understand the role of HDL in CVD.Papers I and II focus on two different mutations in a structural HDL protein, apolipoprotein A-I (L202P and K131del), and one mutation in the scavenger receptor class B-1 (P297S), which is involved in selective lipid uptake of cholesterol mainly into hepatocytes and adrenal cells. The HDL proteome was analyzed using two-dimensional gel electrophoresis and mass spectrometry. The L202P mutation was identified in HDL of the heterozygote carriers together with a significant decrease of apolipoprotein E and increased zinc-alpha-2-glycoprotein. By contrast, the second apolipoprotein AI mutation (K131del) was associated with significantly elevated alpha-1-antitrypsin and transthyretin levels. Protein analyses of the scavenger receptor class B1 P297S heterozygotes showed a significant increase in HDL apoL-1 along with increased free apoE. The carriers showed no difference in antioxidative capability but a significant increase in apoA-I methionine oxidation.Papers III and IV focus on persistent organic pollutants that may influence HDL composition and function. These compounds accumulate in humans, and exposure has been linked to an increased risk of CVD. To provide a better understanding of the HDL system in relation to pollutants, a population living in a contaminated area was studied. Persistent organic pollutants in isolated HDL were quantified using high-resolution gas chromatography mass spectrometry and significantly increased levels were found in individuals with CVD as compared to healthy controls. Furthermore, there was a significant negative association between the pollutants and paraoxonase-1 anti-oxidant activity. Studying the proteome with nano-liquid chromatography tandem mass spectrometry led to the identification of 118 proteins in HDL, of which ten were significantly associated with the persistent organic pollutants.In summary, the present studies demonstrate protein pattern alterations in HDL associated with inherited genetic variants or pollutant exposure. The studies also provide a set of methods that are useful tools to further comprehend the complexity of lipoprotein metabolism and function. The results are important in order to improve our understanding of HDL in CVD and to explain an increased risk of CVD associated with exposure to organic pollutants.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 315
Typ av publikation
tidskriftsartikel (266)
doktorsavhandling (25)
forskningsöversikt (14)
annan publikation (4)
bokkapitel (3)
konferensbidrag (2)
visa fler...
licentiatavhandling (1)
visa färre...
Typ av innehåll
refereegranskat (276)
övrigt vetenskapligt/konstnärligt (38)
populärvet., debatt m.m. (1)
Författare/redaktör
Green, Henrik (21)
Kronstrand, Robert (18)
Hedlund, Petter (9)
Hägg, Staffan (9)
Ahlner, Johan (9)
Bengtsson, Finn, 195 ... (9)
visa fler...
Reis, Margareta (9)
Schön, Thomas (8)
Lind, Lars (8)
Green, Henrik, 1975- (8)
Kahan, Thomas (7)
Benson, Mikael (7)
Heilig, Markus (7)
Melhus, Håkan (6)
Petzold, Max, 1973 (5)
Andersson, Karl Erik (5)
Nyström, Fredrik, 19 ... (5)
Jönsson, Anna K (5)
Bruchfeld, Judith (5)
Ramström, Sofia, 197 ... (5)
Magnusson, Mattias (5)
Carlsson, Björn (5)
Vikingsson, Svante, ... (5)
Lundeberg, Joakim (4)
Johansson, Anna (4)
Eriksson, Elias, 195 ... (4)
Druid, Henrik (4)
Koyi, Hirsh (4)
Brandén, Eva (4)
Wang, Hui (4)
Svedberg, Anna (4)
Heilig, Markus, 1959 ... (4)
Lindahl, Tomas (4)
Simonsson, Ulrika S. ... (4)
Gerdle, Björn (4)
Gyllensten, Hanna, 1 ... (4)
Karlsson, Helen (4)
Blomqvist, Anders, 1 ... (4)
Kurland, Lisa, 1960- (4)
Andersson, Rolf G (4)
Toll, Johan B (4)
Wallerstedt, Susanna ... (4)
Hoffmann, Mikael (4)
Uppugunduri, Sriniva ... (4)
Hägg, Staffan, 1963- (4)
Eliasson, Erik (4)
Kugelberg, Fredrik C ... (4)
Kugelberg, Fredrik (4)
Peterson, Curt (4)
Engblom, David (4)
visa färre...
Lärosäte
Karolinska Institutet (80)
Lunds universitet (48)
Uppsala universitet (42)
Göteborgs universitet (37)
Örebro universitet (28)
visa fler...
Umeå universitet (11)
Kungliga Tekniska Högskolan (11)
Jönköping University (8)
Stockholms universitet (7)
Linnéuniversitetet (7)
Malmö universitet (3)
Chalmers tekniska högskola (3)
Sveriges Lantbruksuniversitet (3)
Högskolan Dalarna (2)
Luleå tekniska universitet (1)
Handelshögskolan i Stockholm (1)
Högskolan i Borås (1)
RISE (1)
Karlstads universitet (1)
Naturhistoriska riksmuseet (1)
VTI - Statens väg- och transportforskningsinstitut (1)
Röda Korsets Högskola (1)
visa färre...
Språk
Engelska (314)
Svenska (1)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (315)
Naturvetenskap (28)
Samhällsvetenskap (9)
Lantbruksvetenskap (4)
Teknik (3)
Humaniora (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy