SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "hsv:(MEDICIN OCH HÄLSOVETENSKAP) hsv:(Medicinska och farmaceutiska grundvetenskaper) hsv:(Fysiologi) ;pers:(Seger Jan)"

Sökning: hsv:(MEDICIN OCH HÄLSOVETENSKAP) hsv:(Medicinska och farmaceutiska grundvetenskaper) hsv:(Fysiologi) > Seger Jan

  • Resultat 1-10 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Balsom, Paul, et al. (författare)
  • Maximal-Intensity Intermittent Exercise: Effect of Recovery Duration
  • 1992
  • Ingår i: International Journal of Sports Medicine. - 0172-4622 .- 1439-3964. ; 13:7, s. 528-533
  • Tidskriftsartikel (refereegranskat)abstract
    • Seven male subjects performed 15 x 40m sprints, on three occasions, with rest periods of either 120 s (R120), 60 s (R60) or 30 s (R30) between each sprint. Sprint times were recorded with four photo cells placed at 0, 15, 30 and 40 m. The performance data indicated that whereas running speed over the last 10 m of each sprint decreased in all three protocols (after 11 sprints in R120, 7 sprints in R60 and 3 sprints in R30), performance during the initial acceleration period from 0-15 m was only affected with the shortest rest periods increasing from (mean +/- SEM) 2.58 +/- .03 (sprint 1) to 2.78 +/- .04 s (spring 15) (p < .05). Post-exercise blood lactate concentration was not significantly different in R120 (12.1 +/- 1.3 mmol.l-1) and R60 (13.9 +/- 1.2 mmol.l-1), but a higher concentration was found in R30 (17.2 +/- .7 mmol.l-1) (p < .05). After 6 sprints there was no significant difference in blood lactate concentration with the different recovery durations, however, there were significant differences in sprint times at this point, suggesting that blood lactate is a poor predictor of performance during this type of exercise. Although the work bouts could be classified primarily as anaerobic exercise, oxygen uptake measured during rest periods increased to 52, 57 and 66% of maximum oxygen uptake in R120, R60 and R30, respectively. Evidence of adenine nucleotide degradation was provided by plasma hypoxanthine and uric acid concentrations elevated post-exercise in all three protocols. Post-exercise uric acid concentration was not significantly affected by recovery duration.(ABSTRACT TRUNCATED AT 250 WORDS)
  •  
2.
  • Fridén, Jan, et al. (författare)
  • Implementation of periodic acid-thiosemicarbazide-silver proteinate staining for ultrastructural assessment of muscle glycogen utilization during exercise
  • 1985
  • Ingår i: Cell and Tissue Research. - 0302-766X .- 1432-0878. ; :242, s. 229-232
  • Tidskriftsartikel (refereegranskat)abstract
    • Distribution of glycogen particles in semithin and ultrathin sections of biopsy samples from human muscles subjected to either short- or long-term running were investigated using PAS and Periodic Acid-ThioSemiCarbazide-Silver Proteinate (PA-TSC-SP) staining methods. Glycogen particles were predominantly found immediately under the sarcolemma or aligned along the myofibrillar I-band. After long-term exhaustive exercise type-1 fibers with a few or no glycogen particles in the core of the fibers were frequently observed. The subsarcolemmal glycogen stores of these "depleted" type-1 fibers were about three times as large as after exhaustive short-time exercise. Another indication of utilization of subsarcolemmal glycogen stores during anaerobic exercise was that many particles displayed a pale, rudimentary shape. This observation suggests fragmental metabolization of glycogen. Thus, depending on type of exercise and type of fiber differential and sequential glycogen utilization patterns can be observed
  •  
3.
  • Fridén, Jan, et al. (författare)
  • Sublethal muscle fibre injuries after high-tension anaerobic exercise
  • 1988
  • Ingår i: European Journal of Applied Physiology and Occupational Physiology. - 0301-5548 .- 1432-1025. ; :57, s. 360-368
  • Tidskriftsartikel (refereegranskat)abstract
    • The vastus lateralis muscles of eleven male elite sprinters (17-28 years) were investigated in order to examine the impact of high tension anaerobic muscular work on muscle fibre fine structure. In an attempt to reproduce the training regimen six subjects ran 20 repetitions of 25 s on a treadmill with 2 min 35 s in between, at a speed corresponding to 86% of their personal best 200 m time. PAS-stained sections of biopsies taken approximately 2 h after training generally indicated glycogen depletion in type 1 and type 2B fibres. At the light microscopic level, no signs of inflammation or fibre rupture were observed. However, at the ultrastructural level, frequent abnormalities of the contractile material and the cytoplasmic organelles were detected. Z-band streaming, autophagic vacuoles and abnormal mitochondria were the most conspicuous observations. Control specimens from sprinters who did not perform the acute exercise routine also displayed structural deviations, although to a lesser degree. It is hypothesized that during sprint training the leg musculature is put under great mechanical and metabolic stress which causes the degenerative response reported here.
  •  
4.
  • Fridén, Jan, et al. (författare)
  • Topographical localization of muscle glycogen: an ultrahistochemical study in the human vastus lateralis
  • 1989
  • Ingår i: Acta Physiologica Scandinavica. - 0001-6772 .- 1365-201X. ; 135, s. 381-391
  • Tidskriftsartikel (refereegranskat)abstract
    • The fine structural pattern of glycogen storage in resting and sprint-exercised human vastus lateralis muscle fibres of different types was analysed using ultrahistochemical methods. Three male subjects (31-36 years) performed 60 consecutive, supramaximal bouts of bicycle exercise, each starting every 1 min and having a duration of 8 s (including approximately 3 s of acceleration). The load was estimated to correspond to 200% of VO2-max. Five other subjects (22-27 years) constituted controls. Ultrathin sections stained with periodic acid-thiosemicarbazide-silver proteinate (PA-TSC-SP) clearly revealed a compartmental distribution of glycogen. Glycogen is stored at five topographically, and probably also functionally, different locations. They are the subsarcolemmal, intermyofibrillar, para-Z-disc, N2-line, and H-zone spaces. During the exercise, glycogen from the N2-line and para-Z-disc locations is preferentially utilized. Serial sections stained with uranyl acetate and lead citrate demonstrated that glycogen stores of the type 2 fibres were more depleted than those of type 1 fibres. The implications of the differential intracellular glycogen storage are discussed
  •  
5.
  • Kim, Chang, et al. (författare)
  • Training effects of electrically induced dynamic contractions in human quadriceps muscle.
  • 1995
  • Ingår i: Aviation, Space and Environmental Medicine. - 0095-6562 .- 1943-4448. ; 66, s. 251-255
  • Tidskriftsartikel (refereegranskat)abstract
    • The effects of electrically induced dynamic muscle contractions on muscle endurance, strength, morphology and enzymatic adaptation were studied in seven male physical education students. The training program consisted of electrically induced one-leg extensions on a modified Krogh cycle with a 30-Watt (W) load for 60 min, 3 times a week for 4 weeks. Muscle fiber type composition was unchanged, but diffusional capacity was increased after electromyostimulation training. The endurance capacity in the trained leg increased by 82% (p < 0.01), but there were no significant changes in citrate synthase, phosphofructokinase activities, and carbonic anhydrase III and myoglobin contents, suggesting that neural adaptation and learning were more important factors for the increased endurance capacity than enzymatic adaptation. Prolyl 4-hydroxylase activity, a marker of collagen biosynthesis, increased 3-fold (p < 0.01) as a result of the training. This could be due to muscle damage caused by electrically induced muscle contractions. In conclusion, electrically induced dynamic muscle contractions can increase muscle endurance without clear concominant changes in muscle morphologic and enzymatic adaptation. Increased prolyl 4-hydroxylase activity could suggest muscle damage caused by electrically induced muscle contractions.
  •  
6.
  • Sahlin, Kent, et al. (författare)
  • Effects of prolonged exercise on the contractile properties of human quadriceps muscle.
  • 1995
  • Ingår i: European Journal of Applied Physiology and Occupational Physiology. - 0301-5548 .- 1432-1025. ; 71, s. 180-186
  • Tidskriftsartikel (refereegranskat)abstract
    • The contractile properties of the quadriceps muscle were measured in seven healthy male subjects before, during and after prolonged cycling to exhaustion. Special efforts were made to obtain measurements immediately after exercise. The exercise intensity corresponded to about 75% of estimated maximal O2 uptake and time to exhaustion was mean 85 (SEM 9) min. At the end of the cycling heart rate and perceived exertion for the legs were 94% and 97% of maximal values, respectively. Maximal voluntary isometric force (MVC) had decreased after 5 min of exercise to a mean 91 (SEM 4)% of the pre-exercise value (P < 0.05) and decreased further to a mean 82 (SEM 6) and mean 66 (SEM 5)% after 40-min cycling and at exhaustion, respectively. A new finding was that during recovery reversal of MVC occurred in different phases where the half recovery time of the initial rapid phase was about 2 min. The MVC was a mean 80 (SEM 2)% of the pre-exercise value after 30 min and was not affected by superimposed electrical stimulation. Maximal voluntary concentric and eccentric forces decreased to 74% and 80% of initial values at exhaustion (P < 0.05). The kinetics of isometric contraction expressed as the time between 5% and 50% of tension (rise time) and the time between 95% and 50% of tension (relaxation time) were not significantly affected by the prolonged cycling. The electromechanical delay measured as the time between the first electrical stimulus and 5% of tension decreased from a mean 32 (SEM 1) ms at rest to a mean 26.6 (SEM 0.6) ms at fatigue (P < 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)
  •  
7.
  • Seger, Jan, et al. (författare)
  • A new dynamometer measuring concentric and eccentric muscle strength in accelerated, decelerated, or isokinetic movements
  • 1988
  • Ingår i: European Journal of Applied Physiology and Occupational Physiology. - 0301-5548 .- 1432-1025. ; 57, s. 526-530
  • Tidskriftsartikel (refereegranskat)abstract
    • A new computerized dynamometer (the SPARK System) is described. The system can measure concentric and eccentric muscle strength (torque) during linear or nonlinear acceleration or deceleration, isokinetic movements up to 400 degrees.s-1, and isometric torque. Studies were performed to assess: I. validity and reproducibility of torque measurements; II. control of lever arm position; III. control of different velocity patterns; IV. control of velocity during subject testing; and, V. intra-individual reproducibility. No significant difference was found between torque values computed by the system and known torque values (p greater than 0.05). No difference was present between programmed and external measurement of the lever arm position. Accelerating, decelerating and isokinetic velocity patterns were highly reproducible, with differences in elapsed time among 10 trials being never greater than 0.001 s. Velocity during concentric and eccentric isokinetic quadriceps contractions at 30 degrees.s-1, 120 degrees.s-1 and 270 degrees.s-1 never varied by more than 3 degrees.s-1 among subjects (N = 21). Over three days of testing, the overall error for concentric and eccentric quadriceps contraction peak torque values for 5 angular velocities between 30 degrees.s-1 and 270 degrees.s-1 ranged from 5.8% to 9.0% and 5.8% to 9.6% respectively (N = 25). The results indicate that the SPARK System provides valid and reproducible torque measurements and strict control of velocity. In addition, the intra-individual error is in accordance with those reported for other similar devices.
  •  
8.
  • Seger, Jan, et al. (författare)
  • Effects of eccentric versus concentric training on thigh muscle strength and EMG.
  • 2005
  • Ingår i: International Journal of Sports Medicine. - 0172-4622 .- 1439-3964. ; 26, s. 45-52
  • Tidskriftsartikel (refereegranskat)abstract
    • The purpose of this study was to compare pure eccentric and concentric strength training regarding possible specific effects of muscle action type on neuromuscular parameters, such as a decreased inhibition during maximal voluntary eccentric actions. Two groups of young healthy adult men performed 10 weeks of either eccentric or concentric unilateral isokinetic knee extensor training at 90 degrees.s(-1), 4 sets of 10 maximal efforts, 3 days a week. Knee extensor torque and surface EMG from the quadriceps and hamstring muscle groups were collected and quantified in a window between 30 and 70 degrees knee angle (range of motion 90-5 degrees ) during maximal voluntary eccentric and concentric knee extensor actions at 30, 90, and 270 degrees.s(-1). Changes in strength of the trained legs revealed more signs of specificity related to velocity and contraction type after eccentric than concentric training. No major training effects were present in eccentric to concentric ratios of agonist EMG or in relative antagonist (hamstring) activation. Thus, for the trained leg, the muscle action type and speed specific changes in maximal voluntary eccentric strength could not be related to any effects on neural mechanisms, such as a selective increase in muscle activation during eccentric actions. Interestingly, with both types of training there were specific cross-education effects, that is, action type and velocity specific increases in strength occurred in the contralateral, untrained, leg, accompanied by a specific increase in eccentric to concentric EMG ratio after eccentric training.
  •  
9.
  • Seger, Jan, et al. (författare)
  • Electrically evoked eccentric and concentric torque-velocity relationships in human knee extensor muscles.
  • 2000
  • Ingår i: Acta Physiologica Scandinavica. - 0001-6772 .- 1365-201X. ; 169, s. 63-69
  • Tidskriftsartikel (refereegranskat)abstract
    • The torque-velocity relationship, obtained during in situ conditions in humans, demonstrates a levelling-off of eccentric torque output at the isometric torque level, at least for knee extensor actions. In contrast, the in vitro force-velocity relationship for animal muscle preparations is characterized by a sharp rise in eccentric force from isometric maximum. A force-regulating 'protective' mechanism has been suggested during maximal voluntary high-tension eccentric muscle actions. To investigate this phenomenon, maximal voluntary and three different levels of submaximal, electrically induced torques were compared during isometric and low velocity (10, 20 and 30 degrees s-1) isokinetic eccentric and concentric knee extensor actions in 10 healthy, moderately trained subjects. Eccentric torque was higher than isometric during electrically evoked, but not during maximal voluntary muscle actions. In contrast, concentric torque was significantly lower than isometric for both maximal voluntary and submaximal, electrically evoked conditions. Comparisons of normalized torques (isometric value under each condition set to 100%) demonstrated that the maximal voluntary eccentric torque had to be increased by 20%, and the isometric by 10% in order for the maximal voluntary torque-velocity curve to coincide with the electrically stimulated submaximal ones. These results support the notion that a tension-regulating mechanism is present primarily during eccentric maximal voluntary knee extensor actions.
  •  
10.
  • Seger, Jan, et al. (författare)
  • Muscle strength and electromyogram in boys and girls followed through puberty.
  • 2000
  • Ingår i: European Journal of Applied Physiology. - 1439-6319 .- 1439-6327. ; 81, s. 54-61
  • Tidskriftsartikel (refereegranskat)abstract
    • The main purpose of this study was to investigate the changes in anthropometric measures and muscle strength that occur during puberty in children from the age of 11 to 16 years. Special attention was paid to possible gender- and muscle action-type-specific alterations in torque/velocity and EMG/velocity characteristics. Sixteen children participated in the study (9 boys and 7 girls). Eccentric and concentric muscle strength was measured on an isokinetic dynamometer at angular velocities of 45, 90 and 180 degrees x s(-1). Simultaneously, a surface electromyogram (EMG) was recorded from the quadriceps muscle. At the age of 11, the boys and girls exhibited equal anthropometric measures and strength performance. In both genders, body measures and muscle strength increased significantly during the 5-year period, with larger increases being recorded for the boys. In addition, the boys increased selectively their eccentric torque per body mass, indicating an action-type-specific change in muscle quality. The general shape of the torque/velocity relationship exhibited an adult-like pattern both before and after puberty, and did not differ between genders. Both pre- and postpuberty, myoelectric activity was generally lower during eccentric than concentric actions, the highest values occurring for both genders in the concentric 180 degrees x s(-1) test. Ratios of eccentric to concentric torque per EMG, which reflect electromechanical efficiency, showed no significant changes with age. A significant velocity- and gender-specific change in electromechanical efficiency was observed at the highest speed at postpuberty, where the ratio for the girls was higher than for the boys.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy