SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "hsv:(NATURVETENSKAP) hsv:(Biologi) ;hsvcat:4"

Sökning: hsv:(NATURVETENSKAP) hsv:(Biologi) > Lantbruksvetenskap

  • Resultat 1-10 av 5300
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Sanli, Kemal, et al. (författare)
  • Metagenomic Sequencing of Marine Periphyton: Taxonomic and Functional Insights into Biofilm Communities
  • 2015
  • Ingår i: Frontiers in Microbiology. - : Frontiers Media SA. - 1664-302X. ; 6:1192
  • Tidskriftsartikel (refereegranskat)abstract
    • Periphyton communities are complex phototrophic, multispecies biofilms that develop on surfaces in aquatic environments. These communities harbor a large diversity of organisms comprising viruses, bacteria, algae, fungi, protozoans and metazoans. However, thus far the total biodiversity of periphyton has not been described. In this study, we use metagenomics to characterize periphyton communities from the marine environment of the Swedish west coast. Although we found approximately ten times more eukaryotic rRNA marker gene sequences compared to prokaryotic, the whole metagenome-based similarity searches showed that bacteria constitute the most abundant phyla in these biofilms. We show that marine periphyton encompass a range of heterotrophic and phototrophic organisms. Heterotrophic bacteria, including the majority of proteobacterial clades and Bacteroidetes, and eukaryotic macro-invertebrates were found to dominate periphyton. The phototrophic groups comprise Cyanobacteria and the alpha-proteobacterial genus Roseobacter, followed by different micro- and macro-algae. We also assess the metabolic pathways that predispose these communities to an attached lifestyle. Functional indicators of the biofilm form of life in periphyton involve genes coding for enzymes that catalyze the production and degradation of extracellular polymeric substances, mainly in the form of complex sugars such as starch and glycogen-like meshes together with chitin. Genes for 278 different transporter proteins were detected in the metagenome, constituting the most abundant protein complexes. Finally, genes encoding enzymes that participate in anaerobic pathways, such as denitrification and methanogenesis, were detected suggesting the presence of anaerobic or low-oxygen micro-zones within the biofilms.
  •  
2.
  • Nilsson, R. Henrik, 1976, et al. (författare)
  • Mycobiome diversity: high-throughput sequencing and identification of fungi.
  • 2019
  • Ingår i: Nature reviews. Microbiology. - : Springer Science and Business Media LLC. - 1740-1534 .- 1740-1526. ; 17, s. 95-109
  • Forskningsöversikt (refereegranskat)abstract
    • Fungi are major ecological players in both terrestrial and aquatic environments by cycling organic matter and channelling nutrients across trophic levels. High-throughput sequencing (HTS) studies of fungal communities are redrawing the map of the fungal kingdom by hinting at its enormous - and largely uncharted - taxonomic and functional diversity. However, HTS approaches come with a range of pitfalls and potential biases, cautioning against unwary application and interpretation of HTS technologies and results. In this Review, we provide an overview and practical recommendations for aspects of HTS studies ranging from sampling and laboratory practices to data processing and analysis. We also discuss upcoming trends and techniques in the field and summarize recent and noteworthy results from HTS studies targeting fungal communities and guilds. Our Review highlights the need for reproducibility and public data availability in the study of fungal communities. If the associated challenges and conceptual barriers are overcome, HTS offers immense possibilities in mycology and elsewhere.
  •  
3.
  • Kõljalg, Urmas, et al. (författare)
  • A price tag on species
  • 2022
  • Ingår i: Research Ideas and Outcomes_RIO. - : Pensoft Publishers. - 2367-7163. ; 8, s. 1-7
  • Tidskriftsartikel (refereegranskat)abstract
    • Species have intrinsic value but also partake in a long range of ecosystem services of major economic value to humans. These values have proved hard to quantify precisely, making it all too easy to dismiss them altogether. We outline the concept of the species stock market (SSM), a system to provide a unified basis for valuation of all living species. The SSM amalgamates digitized information from natural history collections, occurrence data, and molecular sequence databases to quantify our knowledge of each species from scientific, societal, and economic points of view. The conceptual trading system will necessarily be very unlike that of the regular stock market, but the looming biodiversity crisis implores us to finally put an open and transparent price tag on symbiosis, deforestation, and pollution
  •  
4.
  • Nilsson, R. Henrik, 1976, et al. (författare)
  • Introducing guidelines for publishing DNA-derived occurrence data through biodiversity data platforms
  • 2022
  • Ingår i: Metabarcoding and Metagenomics. - : Pensoft Publishers. - 2534-9708. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • DNA sequencing efforts of environmental and other biological samples disclose unprecedented and largely untapped opportunities for advances in the taxonomy, ecology, and geographical distributions of our living world. To realise this potential, DNA-derived occurrence data (notably sequences with dates and coordinates) – much like traditional specimens and observations – need to be discoverable and interpretable through biodiversity data platforms. The Global Biodiversity Information Facility (GBIF) recently headed a community effort to assemble a set of guidelines for publishing DNA-derived data. These guidelines target the principles and approaches of exposing DNA-derived occurrence data in the context of broader biodiversity data. They cover a choice of terms using a controlled vocabulary, common pitfalls, and good practices, without going into platform-specific details. Our hope is that they will benefit anyone interested in better exposure of DNA-derived occurrence data through general biodiversity data platforms, including national biodiversity portals. This paper provides a brief rationale and an overview of the guidelines, an up-to-date version of which is maintained at https://doi.org/10.35035/doc-vf1a-nr22. User feedback and interaction are encouraged as new techniques and best practices emerge.
  •  
5.
  • Unterseher, Martin, et al. (författare)
  • Mycobiomes of sympatric Amorphophallus albispathus (Araceae) and Camellia sinensis (Theaceae) – a case study reveals clear tissue preferences and differences in diversity and composition
  • 2018
  • Ingår i: Mycological Progress. - : Springer Science and Business Media LLC. - 1617-416X .- 1861-8952. ; 17:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Multiple biotic and abiotic parameters influence the dynamics of individual fungal species and entire communities. Major drivers for tropical plant endophytes are undoubtedly seasonality, local habitat conditions and biogeography. However, host specialization and tissue preferences also contribute to the structuring of endophytic mycobiomes. To elucidate such specializations and preferences, we sampled two commercially important, unrelated plant species, Amorphophallus albispathus and Camellia sinensis (tea plant) simultaneously at close proximity. The mycobiomes of different tissue types were assessed with high-throughput amplicon sequencing of the internal transcribed spacer DNA region. Both plants hosted different fungal communities and varied in α- and β-diversity, despite their neighboring occurrence. However, the fungal assemblages of Amorphophallus leaflets shared taxa with the mycobiomes of tea leaves, thereby suggesting common driving forces for leaf-inhabiting fungi irrespective of host plant identity. The mycobiome composition and diversity of tea leaves was clearly driven by leaf age. We suggest that the very youngest tea leaves are colonized by stochastic processes, while mycobiomes of old leaves are rather similar as the result of progressive succession. The biodiversity of fungi associated with A. albispathus was characterized by a large number of unclassified OTUs (at genus and species level) and by tissue-specific composition.This study is the first cultivation-independent high-throughput assessment of fungal biodiversity of an Amorphophallus species, and additionally expands the knowledge base on fungi associated with tea plants.
  •  
6.
  • Crous, P. W., et al. (författare)
  • Fusarium : more than a node or a foot-shaped basal cell
  • 2021
  • Ingår i: Studies in mycology. - : CENTRAALBUREAU SCHIMMELCULTURE. - 0166-0616 .- 1872-9797. ; :98
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent publications have argued that there are potentially serious consequences for researchers in recognising distinct genera in the terminal fusarioid clade of the family Nectriaceae. Thus, an alternate hypothesis, namely a very broad concept of the genus Fusarium was proposed. In doing so, however, a significant body of data that supports distinct genera in Nectriaceae based on morphology, biology, and phylogeny is disregarded. A DNA phylogeny based on 19 orthologous protein-coding genes was presented to support a very broad concept of Fusarium at the F1 node in Nectriaceae. Here, we demonstrate that re-analyses of this dataset show that all 19 genes support the F3 node that represents Fusarium sensu stricto as defined by F. sambucinum (sexual morph synonym Gibberella pulicaris). The backbone of the phylogeny is resolved by the concatenated alignment, but only six of the 19 genes fully support the F1 node, representing the broad circumscription of Fusarium. Furthermore, a re-analysis of the concatenated dataset revealed alternate topologies in different phylogenetic algorithms, highlighting the deep divergence and unresolved placement of various Nectriaceae lineages proposed as members of Fusarium. Species of Fusarium s. str. are characterised by Gibberella sexual morphs, asexual morphs with thin- or thick-walled macroconidia that have variously shaped apical and basal cells, and trichothecene mycotoxin production, which separates them from other fusarioid genera. Here we show that the Wollenweber concept of Fusarium presently accounts for 20 segregate genera with clear-cut synapomorphic traits, and that fusarioid macroconidia represent a character that has been gained or lost multiple times throughout Nectriaceae. Thus, the very broad circumscription of Fusarium is blurry and without apparent synapomorphies, and does not include all genera with fusarium-like macroconidia, which are spread throughout Nectriaceae (e.g., Cosmosporella, Macroconia, Microcera). In this study four new genera are introduced, along with 18 new species and 16 new combinations. These names convey information about relationships, morphology, and ecological preference that would otherwise be lost in a broader definition of Fusarium. To assist users to correctly identify fusarioid genera and species, we introduce a new online identification database, Fusarioid-ID, accessible at www.fusarium.org. The database comprises partial sequences from multiple genes commonly used to identify fusarioid taxa (act1, CaM, his3, rpb1, rpb2, tef1, tub2, ITS, and LSU). In this paper, we also present a nomenclator of names that have been introduced in Fusarium up to January 2021 as well as their current status, types, and diagnostic DNA barcode data. In this study, researchers from 46 countries, representing taxonomists, plant pathologists, medical mycologists, quarantine officials, regulatory agencies, and students, strongly support the application and use of a more precisely delimited Fusarium (= Gibberella) concept to accommodate taxa from the robust monophyletic node F3 on the basis of a well-defined and unique combination of morphological and biochemical features. This F3 node includes, among others, species of the F. fujikuroi, F. incarnatum-equiseti, F. oxysporum, and F. sambucinum species complexes, but not species of Bisifusarium [F. dimerum species complex (SC)], Cyanonectria (F. buxicola SC), Geejayessia (F. staphyleae SC), Neocosmospora (F. solani SC) or Rectifusarium (F. ventricosum SC). The present study represents the first step to generating a new online monograph of Fusarium and allied fusarioid genera (www.fusarium.org).
  •  
7.
  • Ritter, Camila, et al. (författare)
  • Biodiversity assessments in the 21st century: The potential of insect traps to complement environmental samples for estimating eukaryotic and prokaryotic diversity using high-throughput DNA metabarcoding.
  • 2019
  • Ingår i: Genome. - : Canadian Science Publishing. - 1480-3321 .- 0831-2796. ; 62:3, s. 147-159
  • Tidskriftsartikel (refereegranskat)abstract
    • The rapid loss of biodiversity, coupled with difficulties in species identification, call for innovative approaches to assess biodiversity. Insects make up a substantial proportion of extant diversity and play fundamental roles in any given ecosystem. To complement morphological species identification, new techniques such as metabarcoding make it possible to quantify insect diversity and insect-ecosystem interactions through DNA sequencing. Here we examine the potential of bulk insect samples (i.e., containing many non-sorted specimens) to assess prokaryote and eukaryote biodiversity and to complement the taxonomic coverage of soil samples. We sampled 25 sites on three continents and in various ecosystems, collecting insects with Slam-traps (Brazil) and Malaise-traps (South Africa and Sweden). We then compared our diversity estimates with the results obtained with biodiversity data from soil samples from the same localities. We found a largely different taxonomic composition between the soil and insect samples, testifying to the potential of bulk insect samples to complement soil samples. Finally, we found that non-destructive DNA extraction protocols, which preserve insect specimens for morphological studies, constitute a promising choice for cost-effective biodiversity assessments. We propose that the sampling and sequencing of insect samples should become a standard complement for biodiversity studies based on environmental DNA.
  •  
8.
  • Zanne, Amy E, et al. (författare)
  • Fungal functional ecology: bringing a trait-based approach to plant-associated fungi.
  • 2020
  • Ingår i: Biological reviews of the Cambridge Philosophical Society. - : Wiley. - 1469-185X .- 1464-7931. ; 95:2, s. 409-433
  • Tidskriftsartikel (refereegranskat)abstract
    • Fungi play many essential roles in ecosystems. They facilitate plant access to nutrients and water, serve as decay agents that cycle carbon and nutrients through the soil, water and atmosphere, and are major regulators of macro-organismal populations. Although technological advances are improving the detection and identification of fungi, there still exist key gaps in our ecological knowledge of this kingdom, especially related to function. Trait-based approaches have been instrumental in strengthening our understanding of plant functional ecology and, as such, provide excellent models for deepening our understanding of fungal functional ecology in ways that complement insights gained from traditional and -omics-based techniques. In this review, we synthesize current knowledge of fungal functional ecology, taxonomy and systematics and introduce a novel database of fungal functional traits (FunFun ). FunFun is built to interface with other databases to explore and predict how fungal functional diversity varies by taxonomy, guild, and other evolutionary or ecological grouping variables. To highlight how a quantitative trait-based approach can provide new insights, we describe multiple targeted examples and end by suggesting next steps in the rapidly growing field of fungal functional ecology.
  •  
9.
  • Tedersoo, Leho, et al. (författare)
  • Novel soil-inhabiting clades fill gaps in the fungal tree of life
  • 2017
  • Ingår i: Microbiome. - : Springer Science and Business Media LLC. - 2049-2618. ; 5
  • Tidskriftsartikel (refereegranskat)abstract
    • Background - Fungi are a diverse eukaryotic group of degraders, pathogens, and symbionts, with many lineages known only from DNA sequences in soil, sediments, air, and water. Results - We provide rough phylogenetic placement and principal niche analysis for >40 previously unrecognized fungal groups at the order and class level from global soil samples based on combined 18S (nSSU) and 28S (nLSU) rRNA gene sequences. Especially, Rozellomycota (Cryptomycota), Zygomycota s.lat, Ascomycota, and Basidiomycota are rich in novel fungal lineages, most of which exhibit distinct preferences for climate and soil pH. Conclusions - This study uncovers the great phylogenetic richness of previously unrecognized order- to phylum-level fungal lineages. Most of these rare groups are distributed in different ecosystems of the world but exhibit distinct ecological preferences for climate or soil pH. Across the fungal kingdom, tropical and non-tropical habitats are equally likely to harbor novel groups. We advocate that a combination of traditional and high-throughput sequencing methods enable efficient recovery and phylogenetic placement of such unknown taxonomic groups.
  •  
10.
  • Nilsson, R. Henrik, 1976, et al. (författare)
  • The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications.
  • 2019
  • Ingår i: Nucleic acids research. - : Oxford University Press (OUP). - 1362-4962 .- 0305-1048. ; 47:D1, s. D259-D264
  • Tidskriftsartikel (refereegranskat)abstract
    • UNITE (https://unite.ut.ee/) is a web-based database and sequence management environment for the molecular identification of fungi. It targets the formal fungal barcode-the nuclear ribosomal internal transcribed spacer (ITS) region-and offers all ∼1 000 000 public fungal ITS sequences for reference. These are clustered into ∼459 000 species hypotheses and assigned digital object identifiers (DOIs) to promote unambiguous reference across studies. In-house and web-based third-party sequence curation and annotation have resulted in more than 275 000 improvements to the data over the past 15 years. UNITE serves as a data provider for a range of metabarcoding software pipelines and regularly exchanges data with all major fungal sequence databases and other community resources. Recent improvements include redesigned handling of unclassifiable species hypotheses, integration with the taxonomic backbone of the Global Biodiversity Information Facility, and support for an unlimited number of parallel taxonomic classification systems.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 5300
Typ av publikation
tidskriftsartikel (3907)
rapport (384)
doktorsavhandling (225)
konferensbidrag (200)
forskningsöversikt (200)
bokkapitel (187)
visa fler...
annan publikation (155)
bok (22)
licentiatavhandling (10)
samlingsverk (redaktörskap) (4)
patent (3)
konstnärligt arbete (1)
proceedings (redaktörskap) (1)
recension (1)
visa färre...
Typ av innehåll
refereegranskat (4081)
övrigt vetenskapligt/konstnärligt (959)
populärvet., debatt m.m. (260)
Författare/redaktör
Arnemo, Jon (101)
Ericsson, Göran (100)
Brunet, Jörg (72)
Neumann, Wiebke (63)
Casini, Michele (62)
Andersson, Leif (60)
visa fler...
Singh, Navinder (58)
Bommarco, Riccardo (56)
De Jong, Adriaan (56)
Smith, Henrik G. (54)
Dettki, Holger (52)
Rundlöf, Maj (49)
Laudon, Hjalmar (48)
Hjältén, Joakim (48)
Stenbacka, Fredrik (48)
Nilsson, R. Henrik, ... (46)
Wardle, David (45)
Stenlid, Jan (44)
Undeland, Ingrid, 19 ... (42)
Rütting, Tobias, 197 ... (42)
Ranius, Thomas (38)
Månsson, Johan (37)
Cromsigt, Joris (37)
Roberge, Jean-Michel (37)
Verheyen, Kris (36)
Weih, Martin (36)
Bengtsson, Jan (36)
Schroeder, Martin (36)
Wallin, Göran, 1955 (34)
Gustafsson, Lena (34)
Thulin, Carl-Gustaf (34)
Sandblom, Erik, 1978 (33)
Mikusinski, Grzegorz (33)
Witzell, Johanna (32)
Sundell, Kristina, 1 ... (31)
Cousins, Sara A. O. (31)
Edenius, Lars (31)
Danell, Kjell (31)
Klemedtsson, Leif, 1 ... (31)
Hedwall, Per-Ola (31)
Felton, Adam (30)
Karlsson, Magnus (29)
Sundh, Henrik, 1976 (29)
De Frenne, Pieter (29)
Menkis, Audrius (29)
Bergström, Ulf (28)
Hallin, Sara (28)
Kindberg, Jonas (28)
Jonsson, Mattias (27)
Malmsten, Jonas (27)
visa färre...
Lärosäte
Sveriges Lantbruksuniversitet (4026)
Göteborgs universitet (536)
Umeå universitet (527)
Lunds universitet (524)
Uppsala universitet (521)
Stockholms universitet (386)
visa fler...
Chalmers tekniska högskola (214)
Kungliga Tekniska Högskolan (134)
Linnéuniversitetet (128)
Örebro universitet (124)
Linköpings universitet (102)
RISE (60)
Karlstads universitet (47)
Mittuniversitetet (45)
Karolinska Institutet (45)
Högskolan Kristianstad (36)
Södertörns högskola (33)
Högskolan i Gävle (31)
Luleå tekniska universitet (29)
Naturhistoriska riksmuseet (28)
Högskolan Dalarna (26)
Högskolan i Skövde (22)
Naturvårdsverket (17)
Högskolan i Halmstad (14)
IVL Svenska Miljöinstitutet (10)
Havs- och vattenmyndigheten (10)
Högskolan i Borås (8)
Marie Cederschiöld högskola (5)
Malmö universitet (3)
Riksantikvarieämbetet (3)
Mälardalens universitet (2)
VTI - Statens väg- och transportforskningsinstitut (2)
Jönköping University (1)
Försvarshögskolan (1)
visa färre...
Språk
Engelska (4680)
Svenska (578)
Norska (25)
Danska (8)
Finska (2)
Persiska (2)
visa fler...
Tyska (1)
Franska (1)
Odefinierat språk (1)
Polska (1)
Nederländska (1)
visa färre...
Forskningsämne (UKÄ/SCB)
Naturvetenskap (5265)
Teknik (226)
Medicin och hälsovetenskap (193)
Samhällsvetenskap (191)
Humaniora (128)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy