SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "hsv:(NATURVETENSKAP) hsv:(Biologi) hsv:(Cellbiologi) ;pers:(Lötvall Jan 1956)"

Search: hsv:(NATURVETENSKAP) hsv:(Biologi) hsv:(Cellbiologi) > Lötvall Jan 1956

  • Result 1-10 of 18
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Höög, Johanna L, 1979, et al. (author)
  • Diversity of extracellular vesicles in human ejaculates revealed by cryo-electron microscopy : Diversity of extracellular vesicles in human ejaculates
  • 2015
  • In: Journal of Extracellular Vesicles. - : Wiley. - 2001-3078. ; 4
  • Journal article (peer-reviewed)abstract
    • Human ejaculates contain extracellular vesicles (EVs), that to a large extent are considered to originate from the prostate gland, and are often denominated ‘‘prostasomes.’’ These EVs are important for human fertility, for example by promoting sperm motility and by inducing immune tolerance of the female immune system to the spermatozoa. So far, the EVs present in human ejaculate have not been studied in their native state, inside the seminal fluid without prior purification and isolation procedures. Using cryo-electron microscopy and tomography, we performed a comprehensive inventory of human ejaculate EVs. The sample was neither centrifuged, fixed, filtered or sectioned, nor were heavy metals added. Approximately 1,500 extracellular structures were imaged and categorized. The extracellular environment of human ejaculate was found to be diverse, with 5 major subcategories of EVs and 6 subcategories of extracellular membrane compartments, including lamellar bodies. Furthermore, 3 morphological features, including electron density, double membrane bilayers and coated surface, are described in all subcategories. This study reveals that the extracellular environment in human ejaculate is multifaceted. Several novel morphological EV subcategories are identified and clues to their cellular origin may be found in their morphology. This inventory is therefore important for developing future experimental approaches, and to interpret previously published data to understand the role of EVs for human male fertility.
  •  
2.
  • Hui, Xiao, et al. (author)
  • Mast cell exosomes promote lung adenocarcinoma cell proliferation - role of KIT-stem cell factor signaling
  • 2014
  • In: Cell Communication and Signaling. - 1478-811X. ; 12:64
  • Journal article (peer-reviewed)abstract
    • Background Human cells release nano-sized vesicles called exosomes, containing mRNA, miRNA and specific proteins. Exosomes from one cell can be taken up by another cell, which is a recently discovered cell-to-cell communication mechanism. Also, exosomes can be taken up by different types of cancer cells, but the potential functional effects of mast cell exosomes on tumor cells remain unknown. Methods and results Exosomes were isolated from the human mast cell line, HMC-1, and uptake of PKH67-labelled exosomes by the lung epithelial cell line, A549, was examined using flow cytometry and fluorescence microscopy. The RNA cargo of the exosomes was analyzed with a Bioanalyzer and absence or presence of the c-KIT mRNA was determined by RT-PCR. The cell proliferation was determined in a BrdU incorporation assay, and proteins in the KIT-SCF signaling pathway were detected by Western blot. Our result demonstrates that exosomes from mast cells can be taken up by lung cancer cells. Furthermore, HMC-1 exosomes contain and transfer KIT protein, but not the c-KIT mRNA to A549 cells and subsequently activate KIT-SCF signal transduction, which increase cyclin D1 expression and accelerate the proliferation in the human lung adenocarcinoma cells. Conclusions Our results indicate that exosomes can transfer KIT as a protein to tumor cells, which can affect recipient cell signaling events through receptor-ligand interactions.
  •  
3.
  • Park, Kyong-Su, et al. (author)
  • Mesenchymal stromal cell-derived nanovesicles ameliorate bacterial outer membrane vesicle-induced sepsis via IL-10.
  • 2019
  • In: Stem cell research & therapy. - : Springer Science and Business Media LLC. - 1757-6512. ; 10:1
  • Journal article (peer-reviewed)abstract
    • Sepsis remains a source of high mortality in hospitalized patients despite proper antibiotic approaches. Encouragingly, mesenchymal stromal cells (MSCs) and their produced extracellular vesicles (EVs) have been shown to elicit anti-inflammatory effects in multiple inflammatory conditions including sepsis. However, EVs are generally released from mammalian cells in relatively low amounts, and high-yield isolation of EVs is still challenging due to a complicated procedure. To get over these limitations, vesicles very similar to EVs can be produced by serial extrusions of cells, after which they are called nanovesicles (NVs). We hypothesized that MSC-derived NVs can attenuate the cytokine storm induced by bacterial outer membrane vesicles (OMVs) in mice, and we aimed to elucidate the mechanism involved.NVs were produced from MSCs by the breakdown of cells through serial extrusions and were subsequently floated in a density gradient. Morphology and the number of NVs were analyzed by transmission electron microscopy and nanoparticle tracking analysis. Mice were intraperitoneally injected with Escherichia coli-derived OMVs to establish sepsis, and then injected with 2 × 109 NVs. Innate inflammation was assessed in peritoneal fluid and blood through investigation of infiltration of cells and cytokine production. The biodistribution of NVs labeled with Cy7 dye was analyzed using near-infrared imaging.Electron microscopy showed that NVs have a nanometer-size spherical shape and harbor classical EV marker proteins. In mice, NVs inhibited eye exudates and hypothermia, signs of a systemic cytokine storm, induced by intraperitoneal injection of OMVs. Moreover, NVs significantly suppressed cytokine release into the systemic circulation, as well as neutrophil and monocyte infiltration in the peritoneum. The protective effect of NVs was significantly reduced by prior treatment with anti-interleukin (IL)-10 monoclonal antibody. In biodistribution study, NVs spread to the whole mouse body and localized in the lung, liver, and kidney at 6 h.Taken together, these data indicate that MSC-derived NVs have beneficial effects in a mouse model of sepsis by upregulating the IL-10 production, suggesting that artificial NVs may be novel EV-mimetics clinically applicable to septic patients.
  •  
4.
  • Yáñez-Mó, María, et al. (author)
  • Biological properties of extracellular vesicles and their physiological functions.
  • 2015
  • In: Journal of extracellular vesicles. - : Wiley. - 2001-3078. ; 4
  • Research review (peer-reviewed)abstract
    • In the past decade, extracellular vesicles (EVs) have been recognized as potent vehicles of intercellular communication, both in prokaryotes and eukaryotes. This is due to their capacity to transfer proteins, lipids and nucleic acids, thereby influencing various physiological and pathological functions of both recipient and parent cells. While intensive investigation has targeted the role of EVs in different pathological processes, for example, in cancer and autoimmune diseases, the EV-mediated maintenance of homeostasis and the regulation of physiological functions have remained less explored. Here, we provide a comprehensive overview of the current understanding of the physiological roles of EVs, which has been written by crowd-sourcing, drawing on the unique EV expertise of academia-based scientists, clinicians and industry based in 27 European countries, the United States and Australia. This review is intended to be of relevance to both researchers already working on EV biology and to newcomers who will encounter this universal cell biological system. Therefore, here we address the molecular contents and functions of EVs in various tissues and body fluids from cell systems to organs. We also review the physiological mechanisms of EVs in bacteria, lower eukaryotes and plants to highlight the functional uniformity of this emerging communication system.
  •  
5.
  • Crescitelli, Rossella, 1985, et al. (author)
  • Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes.
  • 2013
  • In: Journal of extracellular vesicles. - : Wiley. - 2001-3078. ; 2
  • Journal article (peer-reviewed)abstract
    • INTRODUCTION: In recent years, there has been an exponential increase in the number of studies aiming to understand the biology of exosomes, as well as other extracellular vesicles. However, classification of membrane vesicles and the appropriate protocols for their isolation are still under intense discussion and investigation. When isolating vesicles, it is crucial to use systems that are able to separate them, to avoid cross-contamination. METHOD: EVS RELEASED FROM THREE DIFFERENT KINDS OF CELL LINES: HMC-1, TF-1 and BV-2 were isolated using two centrifugation-based protocols. In protocol 1, apoptotic bodies were collected at 2,000×g, followed by filtering the supernatant through 0.8 µm pores and pelleting of microvesicles at 12,200×g. In protocol 2, apoptotic bodies and microvesicles were collected together at 16,500×g, followed by filtering of the supernatant through 0.2 µm pores and pelleting of exosomes at 120,000×g. Extracellular vesicles were analyzed by transmission electron microscopy, flow cytometry and the RNA profiles were investigated using a Bioanalyzer(®). RESULTS: RNA profiles showed that ribosomal RNA was primary detectable in apoptotic bodies and smaller RNAs without prominent ribosomal RNA peaks in exosomes. In contrast, microvesicles contained little or no RNA except for microvesicles collected from TF-1 cell cultures. The different vesicle pellets showed highly different distribution of size, shape and electron density with typical apoptotic body, microvesicle and exosome characteristics when analyzed by transmission electron microscopy. Flow cytometry revealed the presence of CD63 and CD81 in all vesicles investigated, as well as CD9 except in the TF-1-derived vesicles, as these cells do not express CD9. CONCLUSIONS: Our results demonstrate that centrifugation-based protocols are simple and fast systems to distinguish subpopulations of extracellular vesicles. Different vesicles show different RNA profiles and morphological characteristics, but they are indistinguishable using CD63-coated beads for flow cytometry analysis.
  •  
6.
  • Zabeo, Davide, 1992, et al. (author)
  • Exosomes purified from a single cell type have diverse morphology
  • 2017
  • In: Journal of extracellular vesicles. - : Wiley. - 2001-3078. ; 6:1
  • Journal article (peer-reviewed)abstract
    • Extracellular vesicles (EVs) are produced by all known organisms and are important for cell communication and physiology. Great morphological diversity has been described regarding EVs found in body fluids such as blood plasma, breast milk, and ejaculate. However, a detailed morphological analysis has never been performed on exosomes when purified from a single cell type. In this study we analysed and quantified, via multiple electron microscopy techniques, the morphology of exosomes purified from the human mast cell line HMC-1. The results revealed a wide diversity in exosome morphology, suggesting that subpopulations of exosomes with different and specific functions may exist. Our findings imply that a new, more efficient way of defining exosome subpopulations is necessary. A system was proposed where exosomes were classified into nine different categories according to their size and shape. Three additional morphological features were also found in exosomes regardless of their morphological classification. These findings show that exosomes purified from a single cell line are also morphologically diverse, similar to previous observations for EVs in body fluids. This knowledge can help to improve the interpretation of experimental results and widen our general understanding of the biological functions of exosomes.
  •  
7.
  • Cvjetkovic, Aleksander, et al. (author)
  • Detailed Analysis of Protein Topology of Extracellular Vesicles–Evidence of Unconventional Membrane Protein Orientation
  • 2016
  • In: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 6
  • Journal article (peer-reviewed)abstract
    • Extracellular vesicles (EVs) are important mediators of intercellular communication that change the recipient cell by shuttling lipids, RNA, or protein cargo between cells. Here, we investigate the topology of the protein cargo found in EVs, as this topology can fundamentally influence the biological effects of EVs. A multiple proteomics approach, combining proteinase treatment and biotin tagging, shows that many proteins of cytosolic origin are localized on the surface of EVs. A detailed analysis of the EV proteome at the peptide level revealed that a number of EV membrane proteins are present in a topologically reversed orientation compared to what is annotated. Two examples of such proteins, SCAMP3 and STX4, were confirmed to have a reversed topology. This reversed typology was determined using flow cytometry and fluorescent microscopy with antibodies directed toward their cytoplasmic epitopes. These results describe a novel workflow to define the EV proteome and the orientation of each protein, including membrane protein topology. These data are fundamentally important to understanding the EV proteome and required to fully explain EV biogenesis as well as biological function in recipient cells.
  •  
8.
  • Cvjetkovic, Aleksander, et al. (author)
  • Extracellular vesicles in motion
  • 2017
  • In: Science Matters. - : Sciencematters. - 2297-8240 .- 2297-9239.
  • Journal article (peer-reviewed)abstract
    • By secreting extracellular vesicles (EVs), including exosomes and microvesicles, into the extracellular milieu, cells can convey complex biological messages between each other. These vesicles are generally thought to be static packages lacking the flexibility of their parental cells in terms of motility and the ability to change shape. However, cryo-electron micrographs reveal the presence of actin-like filaments in a subpopulation of EVs, raising the question if these vesicles could possess motile capabilities similar to that produced by actin in cells. We here show that fluorescently labeled EVs change their shape in a matter of minutes, regardless of whether they are isolated from human body fluids, mouse tissue or cell culture of human cells or yeast. Our findings therefore cast doubt on movement being confined to cells, suggesting that some EVs indeed have an intrinsic capacity to move. This novel observation showing morphological plasticity among EVs adds another level of complexity to the already multifaceted vesicular secretome, and may lead to new ways in which we perceive these nano-carriers of intercellular signals.
  •  
9.
  • Kim, D. K., et al. (author)
  • EVpedia: A community web resource for prokaryotic and eukaryotic extracellular vesicles research
  • 2015
  • In: Seminars in Cell & Developmental Biology. - : Elsevier BV. - 1084-9521. ; 40, s. 4-7
  • Journal article (peer-reviewed)abstract
    • For cell-to-cell communication, all living cells including archaea, bacteria, and eukaryotes secrete nano-sized membrane vesicles into the extracellular space. These extracellular vesicles harbor specific subsets of proteins, mRNAs, miRNAs, lipids, and metabolites that represent their cellular status. These vesicle-specific cargos are considered as novel diagnostic biomarkers as well as therapeutic targets. With the advancement in high-throughput technologies on multiomics studies and improvements in bioinformatics approaches, a huge number of vesicular proteins, mRNAs, miRNAs, lipids, and metabolites have been identified, and our understanding of these complex extracellular organelles has considerably increased during these past years. In this review, we highlight EVpedia (http://evpedia.info), a community web portal for systematic analyses of prokaryotic and eukaryotic extracellular vesicles research. (C) 2015 Elsevier Ltd. All rights reserved.
  •  
10.
  • Lässer, Cecilia, 1981, et al. (author)
  • Exosomes in the nose induce immune cell trafficking and harbour an altered protein cargo in chronic airway inflammation.
  • 2016
  • In: Journal of Translational Medicine. - : Springer Science and Business Media LLC. - 1479-5876. ; 14:1
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Exosomes are nano-sized extracellular vesicles participating in cell-to-cell communication both in health and disease. However, the knowledge about the functions and molecular composition of exosomes in the upper airways is limited. The aim of the current study was therefore to determine whether nasal exosomes can influence inflammatory cells and to establish the proteome of nasal lavage fluid-derived exosomes in healthy subjects, as well as its alterations in individuals with chronic airway inflammatory diseases [asthma and chronic rhinosinusitis (CRS)]. METHODS: Nasal lavage fluid was collected from 14 healthy subjects, 15 subjects with asthma and 13 subjects with asthma/CRS. Exosomes were isolated with differential centrifugation and the proteome was analysed by LC-MS/MS with the application of two exclusion lists as well as using quantitative proteomics. Ingenuity Pathways Analysis and GO Term finder was used to predict the functions associated with the exosomal proteome and a migration assay was used to analyse the effect on immune cells by nasal exosomes. RESULTS: Firstly, we demonstrate that nasal exosomes can induce migration of several immune cells, such as monocytes, neutrophils and NK cells in vitro. Secondly, a mass spectrometry approach, with the application of exclusion lists, was utilised to generate a comprehensive protein inventory of the exosomes from healthy subjects. The use of exclusion lists resulted in the identification of ~15 % additional proteins, and increased the confidence in ~20 % of identified proteins. In total, 604 proteins were identified in nasal exosomes and the nasal exosomal proteome showed strong associations with immune-related functions, such as immune cell trafficking. Thirdly, a quantitative proteomics approach was used to determine alterations in the exosome proteome as a result of airway inflammatory disease. Serum-associated proteins and mucins were more abundant in the exosomes from subjects with respiratory diseases compared to healthy controls while proteins with antimicrobial functions and barrier-related proteins had decreased expression. CONCLUSIONS: Nasal exosomes were shown to induce the migration of innate immune cells, which may be important as the airway epithelium is the first line of defence against pathogens and allergens. The decreased expression in barrier and antimicrobial exosomal proteins in subjects with airway diseases, could possibly contribute to an increased susceptibility to infections, which have important clinical implications in disease progression.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view