SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "hsv:(NATURVETENSKAP) hsv:(Ekologi) ;lar1:(vti)"

Sökning: hsv:(NATURVETENSKAP) hsv:(Ekologi) > VTI - Statens väg- och transportforskningsinstitut

  • Resultat 1-10 av 22
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alatalo, Juha M., et al. (författare)
  • Climate change and climatic events: community-, functional- and species-level responses of bryophytes and lichens to constant, stepwise, and pulse experimental warming in an alpine tundra
  • 2014
  • Ingår i: Alpine Botany. - : Springer Science and Business Media LLC. - 1664-2201 .- 1664-221X. ; 124:2, s. 81-91
  • Tidskriftsartikel (refereegranskat)abstract
    • We experimentally imposed three different kinds of warming scenarios over 3 years on an alpine meadow community to identify the differential effects of climate warming and extreme climatic events on the abundance and biomass of bryophytes and lichens. Treatments consisted of (a) a constant level of warming with open top chambers (an average temperature increase of 1.87 A degrees C), (b) a yearly stepwise increase of warming (average temperature increases of 1.0; 1.87 and 3.54 A degrees C, consecutively), and (c) a pulse warming, i.e., a single first year pulse event of warming (average temperature increase of 3.54 A degrees C only during the first year). To our knowledge, this is the first climate change study that attempts to distinguish between the effects of constant, stepwise and pulse warming on bryophyte and lichen communities. We hypothesised that pulse warming would have a significant short-term effect compared to the other warming treatments, and that stepwise warming would have a significant mid-term effect compared to the other warming treatments. Acrocarpous bryophytes as a group increased in abundance and biomass to the short-term effect of pulse warming. We found no significant effects of mid-term (third-year) stepwise warming. However, one pleurocarpous bryophyte species, Tomentypnum nitens, generally increased in abundance during the warm year 1997 but decreased in control plots and in response to the stepwise warming treatment. Three years of experimental warming (all treatments as a group) did have a significant impact at the community level, yet changes in abundance did not translate into significant changes in the dominance hierarchies at the functional level (for acrocarpous bryophytes, pleurocarpous bryophytes, Sphagnum or lichens), or in significant changes in other bryophyte or lichen species. The results suggest that bryophytes and lichens, both at the functional group and species level, to a large extent are resistant to the different climate change warming simulations that were applied.
  •  
2.
  • Alatalo, Juha M, et al. (författare)
  • Collembola at three alpine subarctic sites resistant to twenty years of experimental warming
  • 2015
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 5
  • Tidskriftsartikel (refereegranskat)abstract
    • This study examined the effects of micro-scale, site and 19 and 21 years of experimental warming on Collembola in three contrasting alpine subarctic plant communities (poor heath, rich meadow, wet meadow). Unexpectedly, experimental long-term warming had no significant effect on species richness, effective number of species, total abundance or abundance of any Collembola species. There were micro-scale effects on species richness, total abundance, and abundance of 10 of 35 species identified. Site had significant effect on effective number of species, and abundance of six species, with abundance patterns differing between sites. Site and long-term warming gave non-significant trends in species richness.The highest species richness was observed in poor heath, but mean species richness tended to be highest in rich meadow and lowest in wet meadow. Warming showed a tendency for a negative impact on species richness. This long-term warming experiment across three contrasting sites revealed that Collembola is capable of high resistance to climate change. We demonstrated that micro-scale and site effects are the main controlling factors for Collembola abundance in high alpine subarctic environments. Thus local heterogeneity is likely important for soil fauna composition and may play a crucial role in buffering Collembola against future climate change.
  •  
3.
  • Alatalo, Juha M., et al. (författare)
  • Dominance hierarchies, diversity and species richness of vascular plants in an alpine meadow: Contrasting short and medium termresponses to simulated global change
  • 2014
  • Ingår i: PeerJ. - : PeerJ Inc.. - 2167-8359. ; 2014:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We studied the impact of simulated global change on a high alpine meadow plant community. Specifically, we examined whether short-term (5 years) responses are good predictors for medium-term (7 years) changes in the system by applying a factorial warming and nutrient manipulation to 20 plots in Latnjajaure, subarctic Sweden. Seven years of experimental warming and nutrient enhancement caused dramatic shifts in dominance hierarchies in response to the nutrient and the combined warming and nutrient enhancement treatments. Dominance hierarchies in the meadow moved from a community being dominated by cushion plants, deciduous, and evergreen shrubs to a community being dominated by grasses, sedges, and forbs. Short-termresponses were shown to be inconsistent in their ability to predict medium-term responses for most functional groups, however, grasses showed a consistent and very substantial increase in response to nutrient addition over the seven years. The non-linear responses over time point out the importance of longer-term studies with repeated measurements to be able to better predict future changes. Forecasted changes to temperature and nutrient availability have implications for trophic interactions, and may ultimately influence the access to and palatability of the forage for grazers. Depending on what anthropogenic change will be most pronounced in the future (increase in nutrient deposits, warming, or a combination of them both), different shifts in community dominance hierarchies may occur. Generally, this study supports the productivity-diversity relationship found across arctic habitats, with community diversity peaking in mid-productivity systems and degrading as nutrient availability increases further. This is likely due the increasing competition in plant-plant interactions and the shifting dominance structure with grasses taking over the experimental plots, suggesting that global change could have high costs to biodiversity in the Arctic. © 2014 Alatalo et al.
  •  
4.
  • Alatalo, J. M., et al. (författare)
  • Impacts of different climate change regimes and extreme climatic events on an alpine meadow community
  • 2016
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate variability is expected to increase in future but there exist very few experimental studies that apply different warming regimes on plant communities over several years. We studied an alpine meadow community under three warming regimes over three years. Treatments consisted of (a) a constant level of warming with open-top chambers (ca. 1.9 degrees C above ambient), (b) yearly stepwise increases in warming (increases of ca. 1.0, 1.9 and 3.5 degrees C), and (c) pulse warming, a single first-year pulse event of warming (increase of ca. 3.5 degrees C). Pulse warming and stepwise warming was hypothesised to cause distinct first-year and third-year effects, respectively. We found support for both hypotheses; however, the responses varied among measurement levels (whole community, canopy, bottom layer, and plant functional groups), treatments, and time. Our study revealed complex responses of the alpine plant community to the different experimentally imposed climate warming regimes. Plant cover, height and biomass frequently responded distinctly to the constant level of warming, the stepwise increase in warming and the extreme pulse-warming event. Notably, we found that stepwise warming had an accumulating effect on biomass, the responses to the different warming regimes varied among functional groups, and the short-term perturbations had negative effect on species richness and diversity
  •  
5.
  • Alatalo, Juha M, 1966-, et al. (författare)
  • Testing reliability of short-term responses to predict longer-term responses of bryophytes and lichens to environmental change
  • 2015
  • Ingår i: Ecological Indicators. - : Elsevier BV. - 1470-160X .- 1872-7034. ; 58, s. 77-85
  • Tidskriftsartikel (refereegranskat)abstract
    • Environmental changes are predicted to have severe and rapid impacts on polar and alpine regions. At high latitudes/altitudes, cryptogams such as bryophytes and lichens are of great importance in terms of biomass, carbon/nutrient cycling, cover and ecosystem functioning. This seven-year factorial experiment examined the effects of fertilizing and experimental warming on bryophyte and lichen abundance in an alpine meadow and a heath community in subarctic Sweden. The aim was to determine whether shortterm responses (five years) are good predictors of longer-term responses (seven years). Fertilizing and warming had significant negative effects on total and relative abundance of bryophytes and lichens, with the largest and most rapid decline caused by fertilizing and combined fertilizing and warming. Bryophytes decreased most in the alpine meadow community, which was bryophyte-dominated, and lichens decreased most in the heath community, which was lichen-dominated. This was surprising, as the most diverse group in each community was expected to be most resistant to perturbation. Warming alone had a delayed negative impact. Of the 16 species included in statistical analyses, seven were significantly negatively affected. Overall, the impacts of simulated warming on bryophytes and lichens as a whole and on individual species differed in time and magnitude between treatments and plant communities (meadow and heath). This will likely cause changes in the dominance structures over time. These results underscore the importance of longer-term studies to improve the quality of data used in climate change models, as models based on short-term data are poor predictors of long-term responses of bryophytes and lichens. (C) 2015 Elsevier Ltd. All rights reserved.
  •  
6.
  • Alatalo, Juha M., et al. (författare)
  • Vascular plant abundance and diversity in an alpine heath under observed and simulated global change
  • 2015
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 5
  • Tidskriftsartikel (refereegranskat)abstract
    • Global change is predicted to cause shifts in species distributions and biodiversity in arctic tundra. We applied factorial warming and nutrient manipulation to a nutrient and species poor alpine/arctic heath community for seven years. Vascular plant abundance in control plots increased by 31%. There were also notable changes in cover in the nutrient and combined nutrient and warming treatments, with deciduous and evergreen shrubs declining, grasses overgrowing these plots. Sedge abundance initially increased significantly with nutrient amendment and then declined, going below initial values in the combined nutrient and warming treatment. Nutrient addition resulted in a change in dominance hierarchy from deciduous shrubs to grasses. We found significant declines in vascular plant diversity and evenness in the warming treatment and a decline in diversity in the combined warming and nutrient addition treatment, while nutrient addition caused a decline in species richness. The results give some experimental support that species poor plant communities with low diversity may be more vulnerable to loss of species diversity than communities with higher initial diversity. The projected increase in nutrient deposition and warming may therefore have negative impacts on ecosystem processes, functioning and services due to loss of species diversity in an already impoverished environment.
  •  
7.
  • Ali, A., et al. (författare)
  • Diversity-productivity dependent resistance of an alpine plant community to different climate change scenarios
  • 2016
  • Ingår i: Ecological Research. - : Wiley. - 0912-3814 .- 1440-1703. ; 31:6, s. 935-945
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we report from a experiment imposing different warming scenarios [control with ambient temperature, constant level of moderate warming for 3 years, stepwise increase in warming for 3 years, and one season of high level warming (pulse) simulating an extreme summer event] on an alpine ecosystem to study the impact on species diversity-biomass relationship, and community resistance in terms of biomass production. Multiple linear mixed models indicate that experimental years had stronger influence on biomass than warming scenarios and species diversity. Species diversity and biomass had almost humpback relationships under different warming scenarios over different experimental years. There was generally a negative diversity-biomass relationship, implying that a positive diversity-biomass relationship was not the case. The application of different warming scenarios did not change this tendency. The change in community resistance to all warming scenarios was generally negatively correlated with increasing species diversity, the strength of the correlation varying both between treatments and between years within treatments. The strong effect of experimental years was consistent with the notion that niche complementarity effects increase over time, and hence, higher biomass productivity over experimental years. The strongest negative relationship was found in the first year of the pulse treatment, indicating that the community had weak resistance to an extreme event of one season of abnormally warm climate. Biomass production started recovering during the two subsequent years. Contrasting biomass-related resistance emerged in the different treatments, indicating that micro sites within the same plant community may differ in their resistance to different warming scenarios.
  •  
8.
  • Denby, Bruce Rolstad, et al. (författare)
  • A coupled road dust and surface moisture model to predict non-exhaust road traffic induced particle emissions (NORTRIP). Part 1 : Road dust loading and suspension modelling
  • 2013
  • Ingår i: Atmospheric Environment. - : Elsevier BV. - 1352-2310 .- 1873-2844. ; 77, s. 283-300
  • Tidskriftsartikel (refereegranskat)abstract
    • Non-exhaust traffic induced emissions are a major source of particle mass in most European countries. This is particularly important in Nordic and Alpine countries where winter time road traction maintenance occurs, e.g. salting and sanding, and where studded tyres are used. In this paper, Part 1, the road dust sub-model of a coupled road dust and surface moisture model (NORTRIP) is described. The model provides a generalised process based formulation of the non-exhaust emissions, with emphasis on the contribution of road wear, suspension, surface dust loading and the effect of road surface moisture (retention of wear particles and suspended emissions). The model is intended for use as a tool for air quality managers to help study the impact of mitigation measures and policies. We present a description of the road dust sub-model and apply the model to two sites in Stockholm and Copenhagen where seven years of data with surface moisture measurements are available. For the site in Stockholm, where studded tyres are in use, the model predicts the PM10 concentrations very well with correlations (R-2) in the range of R-2 = 0.76-0.91 for daily mean PM10. The model also reproduces well the impact of a reduction in studded tyres at this site. For the site in Copenhagen the correlation is lower, in the range 0.44-0.51. The addition of salt is described in the model and at both sites this leads to improved correlations due to additional salt emissions. For future use of the model a number of model parameters, e.g. wear factors and suspension rates, still need to be refined. The effect of sanding on PM10 emissions is also presented but more information will be required before this can be confidently applied for management applications. (C) 2013 Elsevier Ltd. All rights reserved.
  •  
9.
  • Drenning, Paul David, 1992, et al. (författare)
  • A risk management framework for Gentle Remediation Options (GRO)
  • 2022
  • Ingår i: Science of the Total Environment. - : Elsevier BV. - 0048-9697 .- 1879-1026. ; 802
  • Tidskriftsartikel (refereegranskat)abstract
    • Gentle Remediation Options (GRO) are remediation measures involving plants, fungi, bacteria, and soil amendments that can be applied to manage risks at contaminated sites. Several studies and decision-support tools promote the wider range of benefits provided by GRO, but there is still skepticism regarding GRO implementation. Key issues that need to be better communicated are the various risk mitigation mechanisms, the required risk reduction for an envisioned land use, and the time perspective associated with the risk mitigation mechanisms. To increase the viability and acceptance of GRO, the phytomanagement approach implies the combination of GRO with beneficial green land use, gradually reducing risks and restoring ecosystem services. To strengthen the decision basis for GRO implementation in practice, this paper proposes a framework for risk management and communication of GRO applications to support phytomanagement strategies at contaminated sites. The mapping of the risk mitigation mechanisms is done by an extensive literature review and the Swedish national soil guideline value model is used to derive the most relevant human health exposure pathways and ecological risks for generic green land use scenarios. Results indicate that most of the expected risk mitigation mechanisms are supported by literature, but that knowledge gaps still exist. The framework is demonstrated to support the identification of GRO options for the case study site given two envisioned land uses: biofuel park and allotment garden. A more easily understandable risk management framework, as proposed here, is expected to act as a communication tool to educate decision-makers, regulatory bodies and other stakeholders for better understanding of risk mitigation mechanisms and preliminary timeframes of various GRO, particularly in the early stages of a brownfield redevelopment project.
  •  
10.
  • During, Heinjo J, et al. (författare)
  • Biomechanical properties of the terrestrial mosses Pleurozium schreberi (Brid.) Mitt. and Pogonatum japonicum Sull. & Lesq. along altitudinal gradients in northern Japan
  • 2015
  • Ingår i: Arctoa. - : KMK Scientific Press Ltd.. - 0131-1379. ; 24, s. 375-381
  • Tidskriftsartikel (refereegranskat)abstract
    • Altitudinal gradients along mountain slopes provide valuable opportunities to study variation in plant traits in response to changes in environmental conditions along such  gradients. This study focused on biomechanical traits of two moss species, the more or less horizontally growing Pleurozium schreberi and the erect-growing Pogonatum japonicum, along altitudinal gradients on two mountains in Hokkaido, northern Japan.We measured stem diameter in two directions to determine the second moment of area I, used three-point bending tests with free stem ends to determine the slope of the force-deflection curve dF/dx, and used these data to calculate Young’s modulus and flexural rigidity of the stems. Both species showed much variation in all traits among replicates in the samples at each altitude. Environmental variation associated with altitude had more effect on the biomechanical traits of P. japonicum than on those of P. schreberi. Stems of P. japonicum were thicker (larger I) than those of P. schreberi and had a larger Young’s modulus and flexural rigidity. Stems tended to become thinner (lower second moment of area) and less rigid (lower flexural rigidity) at increasing altitude in both species.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 22
Typ av publikation
tidskriftsartikel (21)
bokkapitel (1)
Typ av innehåll
refereegranskat (21)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Molau, Ulf, 1951 (8)
Alatalo, Juha M. (8)
Jägerbrand, Annika K ... (7)
Jägerbrand, Annika, ... (6)
Andersson-Sköld, Yvo ... (4)
Gustafsson, Mats, 19 ... (3)
visa fler...
Olofsson, Bo (2)
Kalantari, Zahra (2)
Alatalo, J. M. (2)
Little, C. J. (2)
Lyon, Steve W. (2)
Järlskog, Ida, 1991 (2)
Hvitt Strömvall, Ann ... (2)
Kudo, Gaku (2)
Bai, Y. (1)
Hassellöv, Martin, 1 ... (1)
Ali, A. (1)
Johansson, Christer (1)
Magnusson, Kerstin (1)
Jägerbrand, Annika K ... (1)
Čuchta, Peter (1)
Little, Chelsea J. (1)
Alatalo, Juha M, 196 ... (1)
Mattsson, Karin (1)
Rosen, Lars, 1962 (1)
Norrman, Jenny, 1971 (1)
Rauch, Sebastien, 19 ... (1)
Omstedt, Gunnar (1)
Polukarova, Maria, 1 ... (1)
Björk, Robert G., 19 ... (1)
Blomqvist, Göran, 19 ... (1)
Folkeson, Lennart, 1 ... (1)
Aronsson, Maria (1)
Ketzel, Matthias (1)
Volchko, Yevheniya, ... (1)
Folkeson, Lennart (1)
Callaghan, Terry V. (1)
Karlfeldt Fedje, Kar ... (1)
Norman, Michael (1)
Chowdhury, Shaswati, ... (1)
Drenning, Paul David ... (1)
Denby, Bruce Rolstad (1)
Sundvor, Ingrid (1)
Pirjola, Liisa (1)
Kupiainen, Kaarle (1)
During, Heinjo J (1)
Verduyn, Betty (1)
Galfi, Helen (1)
Seppelt, Ron D. (1)
Kudo, G. (1)
visa färre...
Lärosäte
Högskolan i Gävle (15)
Jönköping University (15)
Göteborgs universitet (11)
Uppsala universitet (7)
Stockholms universitet (3)
visa fler...
Chalmers tekniska högskola (3)
Kungliga Tekniska Högskolan (2)
IVL Svenska Miljöinstitutet (1)
visa färre...
Språk
Engelska (22)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (22)
Teknik (3)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy