SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "hsv:(NATURVETENSKAP) hsv:(Fysik) hsv:(Acceleratorfysik och instrumentering) ;lar1:(umu)"

Sökning: hsv:(NATURVETENSKAP) hsv:(Fysik) hsv:(Acceleratorfysik och instrumentering) > Umeå universitet

  • Resultat 1-10 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gonoskov, Arkady, 1984, et al. (författare)
  • Employing machine learning for theory validation and identification of experimental conditions in laser-plasma physics
  • 2019
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322 .- 2045-2322. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The validation of a theory is commonly based on appealing to clearly distinguishable and describable features in properly reduced experimental data, while the use of ab-initio simulation for interpreting experimental data typically requires complete knowledge about initial conditions and parameters. We here apply the methodology of using machine learning for overcoming these natural limitations. We outline some basic universal ideas and show how we can use them to resolve long-standing theoretical and experimental difficulties in the problem of high-intensity laser-plasma interactions. In particular we show how an artificial neural network can “read” features imprinted in laser-plasma harmonic spectra that are currently analysed with spectral interferometry.
  •  
2.
  • Horny, Vojtech, 1989, et al. (författare)
  • Generation of single attosecond relativistic electron bunch from intense laser interaction with a nanosphere
  • 2021
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 1361-6587 .- 0741-3335. ; 63:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Ultrahigh-intensity laser-plasma physics provides unique light and particle beams as well as novel physical phenomena. A recently available regime is based on the interaction between a relativistic intensity few-cycle laser pulse and a sub-wavelength-sized mass-limited plasma target. Here, we investigate the generation of electron bunches under these extreme conditions by means of particle-in-cell simulations. In a first step, up to all electrons are expelled from the nanodroplet and gain relativistic energy from time-dependent local field enhancement at the surface. After this ejection, the electrons are further accelerated as they copropagate with the laser pulse. As a result, a few, or under specific conditions isolated, pC-class relativistic attosecond electron bunches are generated with laser pulse parameters feasible at state-of-the-art laser facilities. This is particularly interesting for some applications, such as generation of attosecond x-ray pulses via Thomson backscattering.
  •  
3.
  • Björklund Svensson, Jonas, et al. (författare)
  • Low-divergence femtosecond X-ray pulses from a passive plasma lens
  • 2021
  • Ingår i: Nature Physics. - : Springer Science and Business Media LLC. - 1745-2481 .- 1745-2473. ; 17:5, s. 639-645
  • Tidskriftsartikel (refereegranskat)abstract
    • Electron and X-ray beams originating from compact laser-wakefield accelerators have very small source sizes that are typically on the micrometre scale. Therefore, the beam divergences are relatively high, which makes it difficult to preserve their high quality during transport to applications. To improve on this, tremendous efforts have been invested in controlling the divergence of the electron beams, but no mechanism for generating collimated X-ray beams has yet been demonstrated experimentally. Here we propose and realize a scheme where electron bunches undergoing focusing in a dense, passive plasma lens can emit X-ray pulses with divergences approaching the incoherent limit. Compared with conventional betatron emission, the divergence of this so-called plasma lens radiation is reduced by more than an order of magnitude in solid angle, while maintaining a similar number of emitted photons per electron. This X-ray source offers the possibility of producing brilliant and collimated few-femtosecond X-ray pulses for ultra-fast science, in particular for studies based on X-ray diffraction and absorption spectroscopy. X-ray pulses with low divergences are produced in a laser-wakefield accelerator by focusing electron bunches in a dense passive plasma lens.
  •  
4.
  • Persson, Leif, et al. (författare)
  • Application of a Monte Carlo method to the uncertainty assessment in in situ gamma-ray spectrometry
  • 2018
  • Ingår i: Journal of Environmental Radioactivity. - : Elsevier BV. - 0265-931X .- 1879-1700. ; 187, s. 1-7
  • Tidskriftsartikel (refereegranskat)abstract
    • In situ gamma-ray spectrometry has since the introduction of portable germanium detectors been a widely used method for the assessment of radionuclide ground deposition activity levels. It is, however, a method that is most often associated with fairly large and, more important, poorly known combined measurement uncertainties. In this work an uncertainty analysis of in situ gamma ray spectrometry in accordance with the Guide to the Expression of Uncertainty in Measurements is presented. The uncertainty analysis takes into account uncertainty contributions from the calibration of the detector system, the assumed activity distribution in soil, soil density, detector height and air density. As a result, measurement results from in situ gamma spectrometry will serve as a better basis for decision-making in e.g. radiological emergencies.
  •  
5.
  • Alonso-Mori, Roberto, et al. (författare)
  • Energy-dispersive X-ray emission spectroscopy using an X-ray free-electron laser in a shot-by-shot mode
  • 2012
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 109:47, s. 19103-19107
  • Tidskriftsartikel (refereegranskat)abstract
    • The ultrabright femtosecond X-ray pulses provided by X-ray free-electron lasers open capabilities for studying the structure and dynamics of a wide variety of systems beyond what is possible with synchrotron sources. Recently, this probe-before-destroy approach has been demonstrated for atomic structure determination by serial X-ray diffraction of microcrystals. There has been the question whether a similar approach can be extended to probe the local electronic structure by X-ray spectroscopy. To address this, we have carried out femtosecond X-ray emission spectroscopy (XES) at the Linac Coherent Light Source using redox-active Mn complexes. XES probes the charge and spin states as well as the ligand environment, critical for understanding the functional role of redox-active metal sites. K beta(1,3) XES spectra of Mn-II and Mn-2(III,IV) complexes at room temperature were collected using a wavelength dispersive spectrometer and femtosecond X-ray pulses with an individual dose of up to > 100 MGy. The spectra were found in agreement with undamaged spectra collected at low dose using synchrotron radiation. Our results demonstrate that the intact electronic structure of redox active transition metal compounds in different oxidation states can be characterized with this shot-by-shot method. This opens the door for studying the chemical dynamics of metal catalytic sites by following reactions under functional conditions. The technique can be combined with X-ray diffraction to simultaneously obtain the geometric structure of the overall protein and the local chemistry of active metal sites and is expected to prove valuable for understanding the mechanism of important metalloproteins, such as photosystem II.
  •  
6.
  • Buck, A., et al. (författare)
  • Shock-Front Injector for High-Quality Laser-Plasma Acceleration
  • 2013
  • Ingår i: Physical Review Letters. - : American Physical Society. - 0031-9007 .- 1079-7114. ; 110:18
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the generation of stable and tunable electron bunches with very low absolute energy spread (ΔE≈5  MeV) accelerated in laser wakefields via injection and trapping at a sharp downward density jump produced by a shock front in a supersonic gas flow. The peak of the highly stable and reproducible electron energy spectrum was tuned over more than 1 order of magnitude, containing a charge of 1–100 pC and a charge per energy interval of more than 10  pC/MeV. Laser-plasma electron acceleration with Ti:sapphire lasers using this novel injection mechanism provides high-quality electron bunches tailored for applications.
  •  
7.
  • Cardenas, D. E., et al. (författare)
  • Sub-cycle dynamics in relativistic nanoplasma acceleration
  • 2019
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • The interaction of light with nanometer-sized solids provides the means of focusing optical radiation to sub-wavelength spatial scales with associated electric field enhancements offering new opportunities for multifaceted applications. We utilize collective effects in nanoplasmas with sub-two-cycle light pulses of extreme intensity to extend the waveform-dependent electron acceleration regime into the relativistic realm, by using 106 times higher intensity than previous works to date. Through irradiation of nanometric tungsten needles, we obtain multi-MeV energy electron bunches, whose energy and direction can be steered by the combined effect of the induced near-field and the laser field. We identified a two-step mechanism for the electron acceleration: (i) ejection within a sub-half-optical-cycle into the near-field from the target at >TVm−1 acceleration fields, and (ii) subsequent acceleration in vacuum by the intense laser field. Our observations raise the prospect of isolating and controlling relativistic attosecond electron bunches, and pave the way for next generation electron and photon sources.
  •  
8.
  • Cardenas, Daniel, et al. (författare)
  • Electron bunch evolution in laser-wakefield acceleration
  • 2020
  • Ingår i: Physical Review Accelerators and Beams. - : American Physical Society. - 2469-9888. ; 23
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on systematic and high-precision measurements of the evolution of electron beams in a laser-wakefield accelerator (LWFA). Utilizing shock-front injection, a technique providing stable, tunable and high-quality electron bunches, acceleration and deceleration of few-MeV quasimonoenergetic beams were measured with cutting-edge technology sub-5-fs and 8-fs laser pulses. We explain the observations with dephasing, an effect that fundamentally limits the performance of LWFAs. Typical density dependent electron energy evolution with 57–300  μm dephasing length and 6–20 MeV peak energy was observed and is well described by a parabolic fit. This is a promising electron source for time-resolved few-fs electron diffraction.
  •  
9.
  • Guillaume, E., et al. (författare)
  • Electron Rephasing in a Laser-Wakefield Accelerator
  • 2015
  • Ingår i: Physical Review Letters. - : American Physical Society. - 0031-9007 .- 1079-7114. ; 115:15
  • Tidskriftsartikel (refereegranskat)abstract
    • An important limit for energy gain in laser-plasma wakefield accelerators is the dephasing length, after which the electron beam reaches the decelerating region of the wakefield and starts to decelerate. Here, we propose to manipulate the phase of the electron beam in the wakefield, in order to bring the beam back into the accelerating region, hence increasing the final beam energy. This rephasing is operated by placing an upward density step in the beam path. In a first experiment, we demonstrate the principle of this technique using a large energy spread electron beam. Then, we show that it can be used to increase the energy of monoenergetic electron beams by more than 50%.
  •  
10.
  • Khrennikov, K., et al. (författare)
  • Tunable All-Optical Quasimonochromatic Thomson X-Ray Sourcein the Nonlinear Regime
  • 2015
  • Ingår i: Physical Review Letters. - : American Physical Society. - 0031-9007 .- 1079-7114. ; 114:19
  • Tidskriftsartikel (refereegranskat)abstract
    • We present an all-laser-driven, energy-tunable, and quasimonochromatic x-ray source based on Thomson scattering from laser-wakefield-accelerated electrons. One part of the laser beam was used to drive a few-fs bunch of quasimonoenergetic electrons, while the remainder was backscattered off the bunch at weakly relativistic intensity. When the electron energy was tuned from 17–50 MeV, narrow x-ray spectra peaking at 5–42 keV were recorded with high resolution, revealing nonlinear features. We present a large set of measurements showing the stability and practicality of our source.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy