SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "hsv:(NATURVETENSKAP) hsv:(Geovetenskap och miljövetenskap) ;pers:(Tjernström Michael)"

Sökning: hsv:(NATURVETENSKAP) hsv:(Geovetenskap och miljövetenskap) > Tjernström Michael

  • Resultat 1-10 av 144
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Koenigk, Torben, et al. (författare)
  • Arctic climate change in 21st century CMIP5 simulations with EC-Earth
  • 2012
  • Ingår i: Climate Dynamics. - : Springer-Verlag New York. - 0930-7575 .- 1432-0894. ; 40:11-12
  • Tidskriftsartikel (refereegranskat)abstract
    • The Arctic climate change is analyzed in anensemble of future projection simulations performed withthe global coupled climate model EC-Earth2.3. EC-Earthsimulates the twentieth century Arctic climate relativelywell but the Arctic is about 2 K too cold and the sea icethickness and extent are overestimated. In the twenty-firstcentury, the results show a continuation and strengtheningof the Arctic trends observed over the recent decades,which leads to a dramatically changed Arctic climate,especially in the high emission scenario RCP8.5. Theannually averaged Arctic mean near-surface temperatureincreases by 12 K in RCP8.5, with largest warming in theBarents Sea region. The warming is most pronounced inwinter and autumn and in the lower atmosphere. The Arcticwinter temperature inversion is reduced in all scenarios anddisappears in RCP8.5. The Arctic becomes ice free inSeptember in all RCP8.5 simulations after a rapid reductionevent without recovery around year 2060. Taking intoaccount the overestimation of ice in the twentieth century,our model results indicate a likely ice-free Arctic inSeptember around 2040. Sea ice reductions are most pronouncedin the Barents Sea in all RCPs, which lead to themost dramatic changes in this region. Here, surface heatfluxes are strongly enhanced and the cloudiness is substantiallydecreased. The meridional heat flux into theArctic is reduced in the atmosphere but increases in theocean. This oceanic increase is dominated by an enhancedheat flux into the Barents Sea, which strongly contributes tothe large sea ice reduction and surface-air warming in thisregion. Increased precipitation and river runoff lead to morefreshwater input into the Arctic Ocean. However, most ofthe additional freshwater is stored in the Arctic Ocean whilethe total Arctic freshwater export only slightly increases.
  •  
2.
  • Prytherch, John, 1980-, et al. (författare)
  • Central Arctic Ocean surface-atmosphere exchange of CO2 and CH4 constrained by direct measurements
  • 2024
  • Ingår i: Biogeosciences. - : Copernicus Publications. - 1726-4170 .- 1726-4189. ; 21:2, s. 671-688
  • Tidskriftsartikel (refereegranskat)abstract
    • The central Arctic Ocean (CAO) plays an important role in the global carbon cycle, but the current and future exchange of the climate-forcing trace gases methane (CH4) and carbon dioxide (CO2) between the CAO and the atmosphere is highly uncertain. In particular, there are very few observations of near-surface gas concentrations or direct air-sea CO2 flux estimates and no previously reported direct air-sea CH4 flux estimates from the CAO. Furthermore, the effect of sea ice on the exchange is not well understood. We present direct measurements of the air-sea flux of CH4 and CO2, as well as air-snow fluxes of CO2 in the summertime CAO north of 82.5 N from the Synoptic Arctic Survey (SAS) expedition carried out on the Swedish icebreaker Oden in 2021. Measurements of air-sea CH4 and CO2 flux were made using floating chambers deployed in leads accessed from sea ice and from the side of Oden, and air-snow fluxes were determined from chambers deployed on sea ice. Gas transfer velocities determined from fluxes and surface-water-dissolved gas concentrations exhibited a weaker wind speed dependence than existing parameterisations, with a median sea-ice lead gas transfer rate of 2.5cmh-1 applicable over the observed 10m wind speed range (1-11ms-1). The average observed air-sea CO2 flux was -7.6mmolm-2d-1, and the average air-snow CO2 flux was -1.1mmolm-2d-1. Extrapolating these fluxes and the corresponding sea-ice concentrations gives an August and September flux for the CAO of -1.75mmolm-2d-1, within the range of previous indirect estimates. The average observed air-sea CH4 flux of 3.5μmolm-2d-1, accounting for sea-ice concentration, equates to an August and September CAO flux of 0.35μmolm-2d-1, lower than previous estimates and implying that the CAO is a very small (‰ 1%) contributor to the Arctic flux of CH4 to the atmosphere.
  •  
3.
  • Prytherch, John, et al. (författare)
  • Direct determination of the air-sea CO2 gas transfer velocity in Arctic sea ice regions
  • 2017
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 44:8, s. 3770-3778
  • Tidskriftsartikel (refereegranskat)abstract
    • The Arctic Ocean is an important sink for atmospheric CO2. The impact of decreasing sea ice extent and expanding marginal ice zones on Arctic air-sea CO2 exchange depends on the rate of gas transfer in the presence of sea ice. Sea ice acts to limit air-sea gas exchange by reducing contact between air and water but is also hypothesized to enhance gas transfer rates across surrounding open-water surfaces through physical processes such as increased surface-ocean turbulence from ice-water shear and ice-edge form drag. Here we present the first direct determination of the CO2 air-sea gas transfer velocity in a wide range of Arctic sea ice conditions. We show that the gas transfer velocity increases near linearly with decreasing sea ice concentration. We also show that previous modeling approaches overestimate gas transfer rates in sea ice regions.
  •  
4.
  • Achtert, Peggy, et al. (författare)
  • Properties of Arctic liquid and mixed-phase clouds from shipborne Cloudnet observations during ACSE 2014
  • 2020
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 20:23, s. 14983-15002
  • Tidskriftsartikel (refereegranskat)abstract
    • This study presents Cloudnet retrievals of Arctic clouds from measurements conducted during a 3-month research expedition along the Siberian shelf during summer and autumn 2014. During autumn, we find a strong reduction in the occurrence of liquid clouds and an increase for both mixed-phase and ice clouds at low levels compared to summer. About 80 % of all liquid clouds observed during the research cruise show a liquid water path below the infrared black body limit of approximately 50 g m(-2). The majority of mixed-phase and ice clouds had an ice water path below 20 g m(-2). Cloud properties are analysed with respect to cloud-top temperature and boundary layer structure. Changes in these parameters have little effect on the geometric thickness of liquid clouds while mixed-phase clouds during warm-air advection events are generally thinner than when such events were absent. Cloud-top temperatures are very similar for all mixed-phase clouds. However, more cases of lower cloudtop temperature were observed in the absence of warm-air advection. Profiles of liquid and ice water content are normalized with respect to cloud base and height. For liquid water clouds, the liquid water content profile reveals a strong increase with height with a maximum within the upper quarter of the clouds followed by a sharp decrease towards cloud top. Liquid water content is lowest for clouds observed below an inversion during warm-air advection events. Most mixedphase clouds show a liquid water content profile with a very similar shape to that of liquid clouds but with lower maximum values during events with warm air above the planetary boundary layer. The normalized ice water content profiles in mixed-phase clouds look different from those of liquid water content. They show a wider range in maximum values with the lowest ice water content for clouds below an inversion and the highest values for clouds above or extending through an inversion. The ice water content profile generally peaks at a height below the peak in the liquid water content profile - usually in the centre of the cloud, sometimes closer to cloud base, likely due to particle sublimation as the crystals fall through the cloud.
  •  
5.
  • Baccarini, Andrea, et al. (författare)
  • Frequent new particle formation over the high Arctic pack ice by enhanced iodine emissions
  • 2020
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • In the central Arctic Ocean the formation of clouds and their properties are sensitive to the availability of cloud condensation nuclei (CCN). The vapors responsible for new particle formation (NPF), potentially leading to CCN, have remained unidentified since the first aerosol measurements in 1991. Here, we report that all the observed NPF events from the Arctic Ocean 2018 expedition are driven by iodic acid with little contribution from sulfuric acid. Iodic acid largely explains the growth of ultrafine particles (UFP) in most events. The iodic acid concentration increases significantly from summer towards autumn, possibly linked to the ocean freeze-up and a seasonal rise in ozone. This leads to a one order of magnitude higher UFP concentration in autumn. Measurements of cloud residuals suggest that particles smaller than 30nm in diameter can activate as CCN. Therefore, iodine NPF has the potential to influence cloud properties over the Arctic Ocean. Which vapors are responsible for new particle formation in the Arctic is largely unknown. Here, the authors show that the formation of new particles at the central Arctic Ocean is mainly driven by iodic acid and that particles smaller than 30nm in diameter can activate as cloud condensation nuclei.
  •  
6.
  • Brooks, Ian M., et al. (författare)
  • The Turbulent Structure of the Arctic Summer Boundary Layer During The Arctic Summer Cloud-Ocean Study
  • 2017
  • Ingår i: Journal of Geophysical Research - Atmospheres. - 2169-897X .- 2169-8996. ; 122:18, s. 9685-9704
  • Tidskriftsartikel (refereegranskat)abstract
    • The mostly ice covered Arctic Ocean is dominated by low-level liquid-or mixed-phase clouds. Turbulence within stratocumulus is primarily driven by cloud top cooling that induces convective instability. Using a suite of in situ and remote sensing instruments we characterize turbulent mixing in Arctic stratocumulus, and for the first time we estimate profiles of the gradient Richardson number at relatively high resolution in both time (10 min) and altitude (10 m). It is found that the mixing occurs both within the cloud, as expected, and by wind shear instability near the surface. About 75% of the time these two layers are separated by a stably stratified inversion at 100-200 m altitude. Exceptions are associated with low cloud bases that allow the cloud-driven turbulence to reach the surface. The results imply that turbulent coupling between the surface and the cloud is sporadic or intermittent.Plain Language Summary: The lower atmosphere over the summertime Arctic Ocean often consists of two well-mixed layers-a surface mixed layer and a cloud mixed layer-that are separated by a weak decoupling layer at about 100 to 300 m above the surface. In these cases, the cloud cannot interact directly with the surface. Large-scale forecast and climate models consistently fail to reproduce this observed structure and may thus fail to correctly reproduce the cloud properties and the amount of energy absorbed by or emitted from the surface as solar and infrared radiation. This contributes to errors in reproducing changes in sea ice concentration over time. Here we use measurements made in the central Arctic to study the processes controlling whether or not the cloud is coupled to the surface. The effect of wind at the surface is found not to be a controlling factor. The depth of the cloud mixed layer is critical, but the multiple processes influencing it cannot be separated using the data available here. However, cooling at cloud top by infrared radiation is key, as is the extension of cloud into the temperature inversion-a unique feature of Arctic clouds.
  •  
7.
  • Devasthale, Abhay, et al. (författare)
  • A DECADE OF SPACEBORNE OBSERVATIONS OF THE ARCTIC ATMOSPHERE : Novel Insights from NASA's AIRS Instrument
  • 2016
  • Ingår i: Bulletin of The American Meteorological Society - (BAMS). - 0003-0007 .- 1520-0477. ; 97:11, s. 2163-2176
  • Tidskriftsartikel (refereegranskat)abstract
    • Arctic sea ice is declining rapidly and its annual ice extent minima reached record lows twice during the last decade. Large environmental and socioeconomic implications related to sea ice reduction in a warming world necessitate realistic simulations of the Arctic climate system, not least to formulate relevant environmental policies on an international scale. However, despite considerable progress in the last few decades, future climate projections from numerical models still exhibit the largest uncertainties over the polar regions. The lack of sufficient observations of essential climate variables is partly to blame for the poor representation of key atmospheric processes, and their coupling to the surface, in climate models. Observations from the hyper spectral Atmospheric Infrared Sounder (AIRS) instrument on board National Aeronautics and Space Administration (NASA)'s Aqua satellite are contributing toward improved understanding of the vertical structure of the atmosphere over the poles since 2002, including the lower troposphere. This part of the atmosphere is especially important in the Arctic, as it directly impacts sea ice and its short-term variability. Although in situ measurements provide invaluable ground truth, they are spatially and temporally inhomogeneous and sporadic over the Arctic. A growing number of studies are exploiting AIRS data to investigate the thermodynamic structure of the Arctic atmosphere, with applications ranging from understanding processes to deriving climatologies; all of which are also useful to test and improve parameterizations in climate models. As the AIRS data record now extends more than a decade, a select few of many such noteworthy applications of AIRS data over this challenging and rapidly changing landscape are highlighted here.
  •  
8.
  • Geerts, Bart, et al. (författare)
  • The COMBLE Campaign : A Study of Marine Boundary Layer Clouds in Arctic Cold-Air Outbreaks
  • 2022
  • Ingår i: Bulletin of The American Meteorological Society - (BAMS). - 0003-0007 .- 1520-0477. ; 103:5, s. E1371-E1389
  • Tidskriftsartikel (refereegranskat)abstract
    • One of the most intense air mass transformations on Earth happens when cold air flows from frozen surfaces to much warmer open water in cold-air outbreaks (CAOs), a process captured beautifully in satellite imagery. Despite the ubiquity of the CAO cloud regime over high-latitude oceans, we have a rather poor understanding of its properties, its role in energy and water cycles, and its treatment in weather and climate models. The Cold-Air Outbreaks in the Marine Boundary Layer Experiment (COMBLE) was conducted to better understand this regime and its representation in models. COMBLE aimed to examine the relations between surface fluxes, boundary layer structure, aerosol, cloud, and precipitation properties, and mesoscale circulations in marine CAOs. Processes affecting these properties largely fall in a range of scales where boundary layer processes, convection, and precipitation are tightly coupled, which makes accurate representation of the CAO cloud regime in numerical weather prediction and global climate models most challenging. COMBLE deployed an Atmospheric Radiation Measurement Mobile Facility at a coastal site in northern Scandinavia (69°N), with additional instruments on Bear Island (75°N), from December 2019 to May 2020. CAO conditions were experienced 19% (21%) of the time at the main site (on Bear Island). A comprehensive suite of continuous in situ and remote sensing observations of atmospheric conditions, clouds, precipitation, and aerosol were collected. Because of the clouds’ well-defined origin, their shallow depth, and the broad range of observed temperature and aerosol concentrations, the COMBLE dataset provides a powerful modeling testbed for improving the representation of mixed-phase cloud processes in large-eddy simulations and large-scale models.  
  •  
9.
  • Hartung, Kerstin, 1989-, et al. (författare)
  • Exploring the Dynamics of an Arctic Sea Ice Melt Event Using a Coupled Atmosphere-Ocean Single-Column Model (AOSCM)
  • 2022
  • Ingår i: Journal of Advances in Modeling Earth Systems. - 1942-2466. ; 14:6
  • Tidskriftsartikel (refereegranskat)abstract
    • The Arctic climate system is host to many processes which interact vertically over the tightly coupled atmosphere, sea ice and ocean. The coupled Atmosphere-Ocean Single-Column Model (AOSCM) allows to decouple local small-scale and large-scale processes to investigate the model performance in an idealized setting. Here, an observed Arctic warm air intrusion event is used to show how to identify model deficiencies using the AOSCM. The AOSCM allows us to effectively produce a large number of perturbation simulations, around 1,000, to map sensitivities of the model results due to changes in physical and model properties as well as to the large-scale tendencies. The analysis of the summary diagnostics, that is, aggregated results from sensitivity experiments evaluated against modeled physical properties, such as surface energy budget and mean sea ice thickness, reveals sensitivities to the chosen parameters. Further, we discuss how the conclusions can be used to understand the behavior of the global host model. The simulations confirm that the horizontal advection of heat and moisture plays an important role for maintaining a low-level cloud cover, as in earlier studies. The combined cloud layers increase the energy input to the surface, which in turn enhances the ongoing melt. The clouds present an additional sensitivity in terms of how they are represented but also their interaction with the large-scale advection and the model time step. The methodology can be used for a variety of other regions, where the coupling to the ocean is important.
  •  
10.
  • Johansson, Erik, et al. (författare)
  • How Does Cloud Overlap Affect the Radiative Heating in the Tropical Upper Troposphere/Lower Stratosphere?
  • 2019
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 46:10, s. 5623-5631
  • Tidskriftsartikel (refereegranskat)abstract
    • Characterizing two-layer cloud systems has historically been difficult. These systems have a strong radiative impact on the composition of and the processes in the upper troposphere-lower stratosphere (UTLS). Using 4 years of combined spaceborne lidar and radar observations, the radiative impact of two-layer cloud systems in the tropical UTLS is characterized, and its sensitivity to the properties of top- and bottom-layer clouds is further quantified. Under these overlapping cloud conditions, the bottom-layer clouds can fully suppress the radiative heating caused by high clouds in the UTLS, by inducing strong longwave cooling. If the vertical separation between the layers is <4 km, the radiative heating of the high cloud changes sign from positive to negative. Furthermore, the radiative effect at the top of the atmosphere is investigated, and it is found that the characteristic net warming by cirrus with ice water path <50 g/m(2) is suppressed in the two-layered system.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 144
Typ av publikation
tidskriftsartikel (125)
doktorsavhandling (10)
konferensbidrag (3)
forskningsöversikt (3)
licentiatavhandling (2)
annan publikation (1)
visa fler...
visa färre...
Typ av innehåll
refereegranskat (127)
övrigt vetenskapligt/konstnärligt (16)
populärvet., debatt m.m. (1)
Författare/redaktör
Sedlar, Joseph (22)
Svensson, Gunilla (19)
Leck, Caroline (17)
Ekman, Annica M. L. (12)
Devasthale, Abhay (11)
visa fler...
Tjernström, Michael, ... (11)
Brooks, Ian M. (10)
Shupe, Matthew D. (10)
Brooks, I. M. (8)
Persson, P. O. G. (8)
Tjernström, Michael, ... (8)
Sotiropoulou, Georgi ... (7)
Zagar, Mark (7)
Prytherch, John (7)
Achtert, Peggy (6)
Shupe, M. D. (6)
Mauritsen, T. (6)
Savre, Julien (5)
Birch, C. E. (5)
Sedlar, J. (5)
Grisogono, Branko (5)
Johansson, Erik (4)
Brooks, Barbara J. (4)
Mauritsen, Thorsten (4)
Sjögren, Staffan (4)
Wyser, Klaus (4)
Graversen, Rune G. (4)
Graversen, Rune Gran ... (4)
Ström, Linda (4)
Kapsch, Marie-Luise (4)
Mueller, M. (3)
Brooks, B. J. (3)
Swietlicki, Erik (3)
Zhang, Qiong (3)
Rinke, Annette (3)
Cassano, John (3)
Söderberg, Stefan (3)
Körnich, Heiner (3)
Devasthale, A. (3)
Samuelsson, Patrick (3)
Vüllers, Jutta (3)
Brooks, Ian (3)
Hansel, A. (3)
Persson, P. Ola G. (3)
Graus, M. (3)
Paatero, J. (3)
Jones, Colin (3)
Semedo, Alvaro (3)
L'Ecuyer, Tristan (3)
visa färre...
Lärosäte
Stockholms universitet (139)
Uppsala universitet (7)
Lunds universitet (4)
Göteborgs universitet (2)
Chalmers tekniska högskola (1)
Språk
Engelska (143)
Svenska (1)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (144)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy