SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "hsv:(NATURVETENSKAP) hsv:(Geovetenskap och miljövetenskap) hsv:(Geofysik) ;pers:(Ivandic Monika)"

Sökning: hsv:(NATURVETENSKAP) hsv:(Geovetenskap och miljövetenskap) hsv:(Geofysik) > Ivandic Monika

  • Resultat 1-10 av 43
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Sopher, Daniel, et al. (författare)
  • Quantitative assessment of seismic source performance : Feasibility of small and affordable seismic sources for long term monitoring at the Ketzin CO2 storage site, Germany
  • 2014
  • Ingår i: Journal of Applied Geophysics. - 0926-9851 .- 1879-1859. ; 107, s. 171-186
  • Tidskriftsartikel (refereegranskat)abstract
    • We apply a range of quantitative pre-stack analysis techniques to assess the feasibility of using smaller and cheaper seismic sources, than those currently used at the Ketzin CO2 storage site. Results from two smaller land sources are presented alongside those from a larger, more powerful source, typically utilized for seismic acquisition at the Ketzin. The geological target for the study is the Triassic Stuttgart Formation which contains a saline aquifer currently used for CO2 storage. The reservoir lies at a depth of approximately 630 m, equivalent to a travel time of 500 ms along the study profile. The three sources discussed in the study are the Vibsist 3000, Vibsist 500 (using industrial hydraulic driven concrete breaking hammers) and a drop hammer source. Data were collected for the comparison using the three sources in 2011, 2012 and 2013 along a 984 m long line with 24m receiver spacing and 12 m shot spacing. Initially a quantitative analysis is performed of the noise levels between the 3 surveys. The raw shot gathers are then analyzed quantitatively to investigate the relative energy output, signal to noise ratio, penetration depth, repeatability and frequency content for the different sources. The performance of the sources is also assessed based on stacked seismic sections. Based on the results from this study it appears that both of the smaller sources are capable of producing good images of the target reservoir and can both be considered suitable as lower cost, less invasive sources for use at the Ketzin site or other shallow CO2 storage projects. Finally, the results from the various pre-stack analysis techniques are discussed in terms of how representative they are of the final stacked sections.
  •  
2.
  • Zhang, Fengjiao, 1981-, et al. (författare)
  • Application of seismic waveform tomography to monitoring of CO2 injection : modeling and a real data example from the Ketzin site, Germany
  • 2013
  • Ingår i: Geophysical Prospecting. - : Wiley-Blackwell. - 0016-8025 .- 1365-2478. ; 61:Suppl.s1, s. 284-299
  • Tidskriftsartikel (refereegranskat)abstract
    • Seismic monitoring of the injected carbon dioxide (CO2) distribution at depth is an important issue in the geological storage of CO2. To help monitor changes in the subsurface during CO2 injection a series of 2D seismic surveys were acquired within the framework of the CO2SINK and CO2MAN projects at Ketzin, Germany at different stages of the injection process. Here we investigate using seismic waveform tomography as a qualitative tool for time-lapse seismic monitoring given the constraints of the limited maximum offsets of the 2D seismic data. Prior to applying the inversion to the real data we first made a number of benchmark tests on synthetic data using a similar geometry as in the real data. Results from the synthetic benchmark tests show that it is difficult to recover the true value of the velocity anomaly due to the injection, but that it is possible to qualitatively locate the distribution of the injected CO2. After the synthetic studies, we applied seismic waveform tomography on the real time-lapse data from the Ketzin site along with conventional time-lapse processing. Both methods show a similar qualitative distribution of the injected CO2 and agree well with expectations based upon more extensive 3D time-lapse monitoring in the area.
  •  
3.
  •  
4.
  • Bergmann, Peter, et al. (författare)
  • Combination of seismic reflection and constrained resistivity inversion with an application to 4D imaging of the CO2 storage site, Ketzin, Germany
  • 2014
  • Ingår i: Geophysics. - : Society of Exploration Geophysicists. - 0016-8033 .- 1942-2156. ; 79:2, s. B37-B50
  • Tidskriftsartikel (refereegranskat)abstract
    • A combination of seismic and geoelectric processing was studied by means of a structurally constrained inversion approach. Structural constraints were interpreted from the seismic data and integrated into the geoelectric inversion through a local regularization, which allowed inverted resistivities to behave discontinuously across defined boundaries. This arranged seismic processing and constrained resistivity inversion in a sequential workflow, making the generic assumption that the petrophysical parameters of both methods change across common lithostructural boundaries. We evaluated the approach using a numerical example and a real data example from the Ketzin CO2 pilot storage site, Germany. The latter demonstrated the efficiency of this approach for combining 4D seismic and surface-downhole geoelectric data. In consistence with the synthetic example, the constrained resistivity inversions produced clearer delineated images along the boundary between caprock and reservoir formation. Near the CO2-flooded reservoir, the seismic and geoelectric time-lapse anomalies correlated well. At some distance to the downhole electrodes, however, the geoelectric images conveyed a notably lower resolution in comparison to the corresponding seismic images. Both methods confirm a northwesterly trend for the CO2 migration at the Ketzin site, although a rather northerly direction was initially expected. The results demonstrate the relevance of the presented approach for the combination of both methods for integrated geophysical CO2 storage monitoring.
  •  
5.
  •  
6.
  • Bergmann, Peter, et al. (författare)
  • Review on geophysical monitoring of CO2 injection at Ketzin, Germany
  • 2016
  • Ingår i: Journal of Petroleum Science and Engineering. - : Elsevier BV. - 0920-4105. ; 139, s. 112-136
  • Tidskriftsartikel (refereegranskat)abstract
    • Geophysical monitoring activities were an important component of the CO2 injection program at the Ketzin site, Germany. Here we report on the seismic and electrical resistivity tomography (ERT) measurements performed during the period of the site development and CO2 injection. Details on the site geology, the history of the CO2 injection operation, and petrophysical models relevant for the interpretation of the geophysical data are presented. The seismic measurements comprise 2D and 3D surface seismic surveys, vertical seismic profilings, and crosshole measurements. Apart from the measurements, results from advanced processing methods, such as impedance inversion and full-waveform inversion are also presented. In addition, results from crosshole ERT and surface-downhole ERT are presented. If operational efforts are taken into consideration we conclude that a combination of several geophysical methods is preferable given the demands of a spatiotemporally comprehensive monitoring program. We base this conclusion on that the different imaging characteristics and petrophysical sensitivities of different methods can complement each other. An important finding is, based on signal quality and reduced operational costs, that the use of permanent installations is promising. Generally, specific monitoring layouts will depend on site-specific characteristics, such as reservoir depth, availability of wells, petrophysical characteristics, and accessibility of surface locations. Given the comprehensive range of methods applied, the reported results are not only relevant to the operation of CO2 storage sites, but are also of interest to other monitoring projects dealing with fluid injection or production.
  •  
7.
  •  
8.
  • Bergmann, Peter, et al. (författare)
  • Time-lapse difference static correction using prestack crosscorrelations : 4D seismic image enhancement case from Ketzin
  • 2014
  • Ingår i: Geophysics. - : Society of Exploration Geophysicists. - 0016-8033 .- 1942-2156. ; 79:6, s. B243-B252
  • Tidskriftsartikel (refereegranskat)abstract
    • A method for static correction of time-lapse differences in reflection arrival times of time-lapse prestack seismic data is presented. These arrival-time differences are typically caused by changes in the near-surface velocities between the acquisitions and had a detrimental impact on time-lapse seismic imaging. Trace-to-trace time shifts of the data sets from different vintages are determined by crosscorrelations. The time shifts are decomposed in a surface-consistent manner, which yields static corrections that tie the repeat data to the baseline data. Hence, this approach implies that new refraction static corrections for the repeat data sets are unnecessary. The approach is demonstrated on a 4D seismic data set from the Ketzin CO2 pilot storage site, Germany, and is compared with the result of an initial processing that was based on separate refraction static corrections. It is shown that the time-lapse difference static correction approach reduces 4D noise more effectively than separate refraction static corrections and is significantly less labor intensive.
  •  
9.
  • DeFelipe, Irene, et al. (författare)
  • Reassessing the lithosphere : SeisDARE, an open-access seismic data repository
  • 2021
  • Ingår i: Earth System Science Data. - : Copernicus Publications. - 1866-3508 .- 1866-3516. ; 13:3, s. 1053-1071
  • Tidskriftsartikel (refereegranskat)abstract
    • Seismic reflection data (normal incidence and wide angle) are unique assets for solid Earth sciences as they provide critical information about the physical properties and structure of the lithosphere as well as about the shallow subsurface for exploration purposes. The resolution of these seismic data is highly appreciated; however they are logistically complex and expensive to acquire, and their geographical coverage is limited. Therefore, it is essential to make the most of the data that have already been acquired. The collation and dissemination of seismic open-access data are then key to promote accurate and innovative research and to enhance new interpretations of legacy data. This work presents the Seismic DAta REpository (SeisDARE), which is, to our knowledge, one of the first comprehensive open-access online databases that stores seismic data registered with a permanent identifier (DOI). The datasets included here are openly accessible online and guarantee the FAIR (findable, accessible, interoperable, reusable) principles of data management, granting the inclusion of each dataset in a statistics referencing database so its impact can be measured. SeisDARE includes seismic data acquired in the last 4 decades in the Iberian Peninsula and Morocco. These areas have attracted the attention of international researchers in the fields of geology and geophysics due to the exceptional outcrops of the Variscan and Alpine orogens and wide foreland basins, the crustal structure of the offshore margins that resulted from a complex plate kinematic evolution, and the vast quantities of natural resources contained within. This database has been built thanks to a network of national and international institutions, promoting a multidisciplinary research and is open for international data exchange and collaborations. As part of this international collaboration, and as a model for inclusion of other global seismic datasets, SeisDARE also hosts seismic data acquired in Hardeman County, Texas (USA), within the COCORP project (Consortium for Continental Reflection Profiling). SeisDARE aims to make easily accessible old and recently acquired seismic data and to establish a framework for future seismic data management plans. SeisDARE is freely available at https://digital.csic.es/handle/10261/101879 (a detailed list of the datasets can be found in Table 1), bringing endless research and teaching opportunities to the scientific, industrial, and educational communities.
  •  
10.
  • Fei, Huang, 1987-, et al. (författare)
  • DMO processing on the Ketzin 3D seismic data
  • 2014
  • Konferensbidrag (refereegranskat)abstract
    • The Dip-moveout (DMO) correction is a process which attempts to make the finite offset data closer to zero offset data after the normal-moveout (NMO) correction. The NMO correction is then dip independent and reflections with different dips will stack coherently. DMO plays a critical role in seismic processing by enhancing the final image quality of the seismic data. In this study, we apply 3D Squeezing DMO (Hale and Artley, 1993) to seismic data from the Ketzin pilot CO2 site after NMO to study the impact of DMO on time-lapse seismic imaging and to investigate if it enhances the CO2 seismic monitoring technique. This 3D DMO method is based on an integral approach and incorporates Hale and Artley’s (1993) modifications for variable velocity with time. A constant velocity algorithm is used with a gamma correction function which depends on the velocity function. An anti-alias velocity of 3000 m/s is used for the DMO. After DMO the data are stacked and F-XY deconvolution is applied. Finally, 3D finite-difference migration using the final smoothed NMO velocities is performed for each data set.We then apply a time-lapse analysis to the 3D seismic data sets and compare the results with and without DMO processing. The most important aspect of the DMO processing is determining the velocity field for the NMO step. This is done by using the initial smoothed velocity field obtained from the conventional velocity analysis before DMO as a first estimate. The data are input into the DMO process and then inverse NMO is applied. These data are then subjected to a new velocity analysis and the velocity field is updated and used as input for the NMO process. A number of iterations are generally required until the velocity field does not need further updating. In this study velocities were picked at every 20th CDP in the inline and crossline directions. Compared to the velocity spectrum without DMO processing, the velocity trend is improved and the ambiguity in the velocity picks is eliminated after DMO correction. The improved accuracy of velocity picking makes it easier to interpret the velocity spectrum and obtain correct interval velocities. Considering the stacked section, DMO suppresses the random noise to a greater extent and thus the signal-to-noise ratio is enhanced. From the comparison of the amplitude difference horizon at the reservoir level, the shape of the anomaly observed in the data with DMO processing is similar to that observed in the data without DMO processing. However, the amplitude anomalies of the former are stronger than those of the latter, especially close to the injection well. In addition, one stronger amplitude anomaly in the DMO time-lapse horizon indicates a preferred trend of the CO2 migration in WNW direction due to the reservoir heterogeneity.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 43

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy