SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "hsv:(NATURVETENSKAP) hsv:(Geovetenskap och miljövetenskap) hsv:(Geofysik) ;pers:(Russell C. T.)"

Sökning: hsv:(NATURVETENSKAP) hsv:(Geovetenskap och miljövetenskap) hsv:(Geofysik) > Russell C. T.

  • Resultat 1-10 av 41
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lapenta, G., et al. (författare)
  • On the origin of the crescent-shaped distributions observed by MMS at the magnetopause
  • 2017
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 122:2, s. 2024-2039
  • Tidskriftsartikel (refereegranskat)abstract
    • MMS observations recently confirmed that crescent-shaped electron velocity distributions in the plane perpendicular to the magnetic field occur in the electron diffusion region near reconnection sites at Earth's magnetopause. In this paper, we reexamine the origin of the crescent-shaped distributions in the light of our new finding that ions and electrons are drifting in opposite directions when displayed in magnetopause boundary-normal coordinates. Therefore, E x B drifts cannot cause the crescent shapes. We performed a high-resolution multiscale simulation capturing subelectron skin-depth scales. The results suggest that the crescent-shaped distributions are caused by meandering orbits without necessarily requiring any additional processes found at the magnetopause such as the highly asymmetric magnetopause ambipolar electric field. We use an adiabatic Hamiltonian model of particle motion to confirm that conservation of canonical momentum in the presence of magnetic field gradients causes the formation of crescent shapes without invoking asymmetries or the presence of an E x B drift. An important consequence of this finding is that we expect crescent-shaped distributions also to be observed in the magnetotail, a prediction that MMS will soon be able to test.
  •  
2.
  • Alm, L., et al. (författare)
  • Differing Properties of Two Ion-Scale Magnetopause Flux Ropes
  • 2018
  • Ingår i: Journal of Geophysical Research - Space Physics. - : AMER GEOPHYSICAL UNION. - 2169-9380 .- 2169-9402. ; 123:1, s. 114-131
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper, we present results from the Magnetospheric Multiscale constellation encountering two ion-scale, magnetopause flux ropes. The two flux ropes exhibit very different properties and internal structure. In the first flux rope, there are large differences in the currents observed by different satellites, indicating variations occurring over sub-d(i) spatial scales, and time scales on the order of the ion gyroperiod. In addition, there is intense wave activity and particle energization. The interface between the two flux ropes exhibits oblique whistler wave activity. In contrast, the second flux rope is mostly quiescent, exhibiting little activity throughout the encounter. Changes in the magnetic topology and field line connectivity suggest that we are observing flux rope coalescence.
  •  
3.
  • Alm, Love, et al. (författare)
  • Magnetotail Hall Physics in the Presence of Cold Ions
  • 2018
  • Ingår i: Geophysical Research Letters. - : Blackwell Publishing Ltd. - 0094-8276 .- 1944-8007. ; 45:20, s. 10,941-10,950
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the first in situ observation of cold ionospheric ions modifying the Hall physics of magnetotail reconnection. While in the tail lobe, Magnetospheric Multiscale mission observed cold (tens of eV) E × B drifting ions. As Magnetospheric Multiscale mission crossed the separatrix of a reconnection exhaust, both cold lobe ions and hot (keV) ions were observed. During the closest approach of the neutral sheet, the cold ions accounted for ∼30% of the total ion density. Approximately 65% of the initial cold ions remained cold enough to stay magnetized. The Hall electric field was mainly supported by the j × B term of the generalized Ohm's law, with significant contributions from the ∇·P e and v c ×B terms. The results show that cold ions can play an important role in modifying the Hall physics of magnetic reconnection even well inside the plasma sheet. This indicates that modeling magnetic reconnection may benefit from including multiscale Hall physics.
  •  
4.
  • André, Mats, et al. (författare)
  • Magnetic reconnection and modification of the Hall physics due to cold ions at the magnetopause
  • 2016
  • Ingår i: Geophysical Research Letters. - : Blackwell Publishing. - 0094-8276 .- 1944-8007. ; 43:13, s. 6705-6712
  • Tidskriftsartikel (refereegranskat)abstract
    • Observations by the four Magnetospheric Multiscale spacecraft are used to investigate the Hall physics of a magnetopause magnetic reconnection separatrix layer. Inside this layer of currents and strong normal electric fields, cold (eV) ions of ionospheric origin can remain frozen-in together with the electrons. The cold ions reduce the Hall current. Using a generalized Ohm's law, the electric field is balanced by the sum of the terms corresponding to the Hall current, the vxB drifting cold ions, and the divergence of the electron pressure tensor. A mixture of hot and cold ions is common at the subsolar magnetopause. A mixture of length scales caused by a mixture of ion temperatures has significant effects on the Hall physics of magnetic reconnection.
  •  
5.
  • Argall, M. R., et al. (författare)
  • Electron Dynamics Within the Electron Diffusion Region of Asymmetric Reconnection
  • 2018
  • Ingår i: Journal of Geophysical Research - Space Physics. - : AMER GEOPHYSICAL UNION. - 2169-9380 .- 2169-9402. ; 123:1, s. 146-162
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigate the agyrotropic nature of electron distribution functions and their substructure to illuminate electron dynamics in a previously reported electron diffusion region (EDR) event. In particular, agyrotropy is examined as a function of energy to reveal detailed finite Larmor radius effects for the first time. It is shown that the previously reported approximate to 66eV agyrotropic "crescent" population that has been accelerated as a result of reconnection is evanescent in nature because it mixes with a denser, gyrotopic background. Meanwhile, accelerated agyrotropic populations at 250 and 500eV are more prominent because the background plasma at those energies is more tenuous. Agyrotropy at 250 and 500eV is also more persistent than at 66eV because of finite Larmor radius effects; agyrotropy is observed 2.5 ion inertial lengths from the EDR at 500eV, but only in close proximity to the EDR at 66eV. We also observe linearly polarized electrostatic waves leading up to and within the EDR. They have wave normal angles near 90 degrees, and their occurrence and intensity correlate with agyrotropy. Within the EDR, they modulate the flux of 500eV electrons travelling along the current layer. The net electric field intensifies the reconnection current, resulting in a flow of energy from the fields into the plasma. Plain Language Summary The process of reconnection involves an explosive transfer of magnetic energy into particle energy. When energetic particles contact modern technology such as satellites, cell phones, or other electronic devices, they can cause random errors and failures. Exactly how particles are energized via reconnection, however, is still unknown. Fortunately, the Magnetospheric Multiscale mission is finally able to detect and analyze reconnection processes. One recent finding is that energized particles take on a crescent-shaped configuration in the vicinity of reconnection and that this crescent shape is related to the energy conversion process. In our paper, we explain why the crescent shape has not been observed until now and inspect particle motions to determine what impact it has on energy conversion. When reconnection heats the plasma, the crescent shape forms from the cool, tenuous particles. As plasmas from different regions mix, dense, nonheated plasma obscures the crescent shape in our observations. The highest-energy particle population created by reconnection, though, also contains features of the crescent shape that are more persistent but appear less dramatically in the data.
  •  
6.
  • Breuillard, H., et al. (författare)
  • Multispacecraft analysis of dipolarization fronts and associated whistler wave emissions using MMS data
  • 2016
  • Ingår i: Geophysical Research Letters. - : Blackwell Publishing. - 0094-8276 .- 1944-8007. ; 43:14, s. 7279-7286
  • Tidskriftsartikel (refereegranskat)abstract
    • Dipolarization fronts (DFs), embedded in bursty bulk flows, play a crucial role in Earth's plasma sheet dynamics because the energy input from the solar wind is partly dissipated in their vicinity. This dissipation is in the form of strong low-frequency waves that can heat and accelerate energetic electrons up to the high-latitude plasma sheet. However, the dynamics of DF propagation and associated low-frequency waves in the magnetotail are still under debate due to instrumental limitations and spacecraft separation distances. In May 2015 the Magnetospheric Multiscale (MMS) mission was in a string-of-pearls configuration with an average intersatellite distance of 160km, which allows us to study in detail the microphysics of DFs. Thus, in this letter we employ MMS data to investigate the properties of dipolarization fronts propagating earthward and associated whistler mode wave emissions. We show that the spatial dynamics of DFs are below the ion gyroradius scale in this region (approximate to 500km), which can modify the dynamics of ions in the vicinity of the DF (e.g., making their motion nonadiabatic). We also show that whistler wave dynamics have a temporal scale of the order of the ion gyroperiod (a few seconds), indicating that the perpendicular temperature anisotropy can vary on such time scales.
  •  
7.
  • Breuillard, H., et al. (författare)
  • The Properties of Lion Roars and Electron Dynamics in Mirror Mode Waves Observed by the Magnetospheric MultiScale Mission
  • 2018
  • Ingår i: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 123:1, s. 93-103
  • Tidskriftsartikel (refereegranskat)abstract
    • Mirror mode waves are ubiquitous in the Earth's magnetosheath, in particular behind the quasi-perpendicular shock. Embedded in these nonlinear structures, intense lion roars are often observed. Lion roars are characterized by whistler wave packets at a frequency similar to 100Hz, which are thought to be generated in the magnetic field minima. In this study, we make use of the high time resolution instruments on board the Magnetospheric MultiScale mission to investigate these waves and the associated electron dynamics in the quasi-perpendicular magnetosheath on 22 January 2016. We show that despite a core electron parallel anisotropy, lion roars can be generated locally in the range 0.05-0.2f(ce) by the perpendicular anisotropy of electrons in a particular energy range. We also show that intense lion roars can be observed up to higher frequencies due to the sharp nonlinear peaks of the signal, which appear as sharp spikes in the dynamic spectra. As a result, a high sampling rate is needed to estimate correctly their amplitude, and the latter might have been underestimated in previous studies using lower time resolution instruments. We also present for the first-time 3-D high time resolution electron velocity distribution functions in mirror modes. We demonstrate that the dynamics of electrons trapped in the mirror mode structures are consistent with the Kivelson and Southwood (1996) model. However, these electrons can also interact with the embedded lion roars: first signatures of electron quasi-linear pitch angle diffusion and possible signatures of nonlinear interaction with high-amplitude wave packets are presented. These processes can lead to electron untrapping from mirror modes.
  •  
8.
  • Burch, J. L., et al. (författare)
  • Localized Oscillatory Energy Conversion in Magnetopause Reconnection
  • 2018
  • Ingår i: Geophysical Research Letters. - : AMER GEOPHYSICAL UNION. - 0094-8276 .- 1944-8007. ; 45:3, s. 1237-1245
  • Tidskriftsartikel (refereegranskat)abstract
    • Data from the NASA Magnetospheric Multiscale mission are used to investigate asymmetric magnetic reconnection at the dayside boundary between the Earth's magnetosphere and the solar wind. High-resolution measurements of plasmas and fields are used to identify highly localized (similar to 15 electron Debye lengths) standing wave structures with large electric field amplitudes (up to 100 mV/m). These wave structures are associated with spatially oscillatory energy conversion, which appears as alternatingly positive and negative values of J . E. For small guide magnetic fields the wave structures occur in the electron stagnation region at the magnetosphere edge of the electron diffusion region. For larger guide fields the structures also occur near the reconnection X-line. This difference is explained in terms of channels for the out-of-plane current (agyrotropic electrons at the stagnation point and guide field-aligned electrons at the X-line).
  •  
9.
  • Cao, D., et al. (författare)
  • MMS observations of whistler waves in electron diffusion region
  • 2017
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 44:9, s. 3954-3962
  • Tidskriftsartikel (refereegranskat)abstract
    • Whistler waves that can produce anomalous resistivity by affecting electrons' motion have been suggested as one of the mechanisms responsible for magnetic reconnection in the electron diffusion region (EDR). Such type of waves, however, has rarely been observed inside the EDR so far. In this study, we report such an observation by Magnetospheric Multiscale (MMS) mission. We find large-amplitude whistler waves propagating away from the X line with a very small wave-normal angle. These waves are probably generated by the perpendicular temperature anisotropy of the -300eV electrons inside the EDR, according to our analysis of dispersion relation and cyclotron resonance condition; they significantly affect the electron-scale dynamics of magnetic reconnection and thus support previous simulations.
  •  
10.
  • Eastwood, J. P., et al. (författare)
  • Guide Field Reconnection : Exhaust Structure and Heating
  • 2018
  • Ingår i: Geophysical Research Letters. - : AMER GEOPHYSICAL UNION. - 0094-8276 .- 1944-8007. ; 45:10, s. 4569-4577
  • Tidskriftsartikel (refereegranskat)abstract
    • Magnetospheric Multiscale observations are used to probe the structure and temperature profile of a guide field reconnection exhaust similar to 100 ion inertial lengths downstream from the X-line in the Earth's magnetosheath. Asymmetric Hall electric and magnetic field signatures were detected, together with a density cavity confined near 1 edge of the exhaust and containing electron flow toward the X-line. Electron holes were also detected both on the cavity edge and at the Hall magnetic field reversal. Predominantly parallel ion and electron heating was observed in the main exhaust, but within the cavity, electron cooling and enhanced parallel ion heating were found. This is explained in terms of the parallel electric field, which inhibits electron mixing within the cavity on newly reconnected field lines but accelerates ions. Consequently, guide field reconnection causes inhomogeneous changes in ion and electron temperature across the exhaust.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 41

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy