SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "hsv:(NATURVETENSKAP) hsv:(Geovetenskap och miljövetenskap) hsv:(Geokemi) ;pers:(Aiglsperger Thomas)"

Sökning: hsv:(NATURVETENSKAP) hsv:(Geovetenskap och miljövetenskap) hsv:(Geokemi) > Aiglsperger Thomas

  • Resultat 1-10 av 42
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Rivera, Javier, et al. (författare)
  • Platinum-group element and gold enrichment in soils monitored by chromium stable isotopes during weathering of ultramafic rocks
  • 2018
  • Ingår i: Chemical Geology. - : Elsevier. - 0009-2541 .- 1872-6836. ; 499, s. 84-99
  • Tidskriftsartikel (refereegranskat)abstract
    • Weathering of ultramafic rocks can lead to the formation of soil profiles with high contents of Fe, Ni, Co, platinum-group elements (PGE) and gold. Traditionally, these metal-rich soils are known as “laterites” and are formed under tropical climates and stable tectonic conditions. However, little is known about their possible development in cold/humid regions, and the factors governing PGE and gold mobility and enrichment under these weathering conditions are poorly constrained. In this study, five soil profiles developed on serpentinized, chromite-bearing ultramafic rocks at La Cabaña, located in the Coastal Range of south-central Chile (38° S) were studied by combining major and trace element geochemistry with chromium stable isotope data. The results show that the soils developed at La Cabaña have higher PGE and Au contents than the parent serpentinite rock, with ∑PGE and Au reaching up to 160 ppb and 29 ppb in a limonitic soil horizon and clay saprolite, respectively. Most soil samples have slightly negative δ53/52CrSRM979 values, within a range of −0.089 ± 0.012‰ to −0.320 ± 0.013‰ (average of −0.178‰), and are in agreement with previous data reported for modern soils. A noteworthy relation between δ53/52Cr data and PGE + Au contents is observed in the studied soil horizons, where isotopically lighter values of δ53/52Cr match the higher contents of PGE and gold. These results show that pedogenetic processes operating at the cold and humid La Cabaña area are capable of increasing the total PGE and Au contents of certain soil horizons. Such processes are complex and multivariate but are primarily modulated by chromite dissolution and the formation of secondary phases such as clay minerals and oxy-hydroxide phases in the soil. These findings provide evidence that important weathering and PGE + Au supergene accumulation are not only restricted to tropical latitudes, and that the chromium isotope system is a useful proxy to track surface redox process and noble metal enrichment during pedogenesis.
  •  
2.
  •  
3.
  • Salifu, Musah, et al. (författare)
  • Stable sulphur and oxygen isotopes as indicators of sulphide oxidation reaction pathways and historical environmental conditions in a Cu–W–F skarn tailings piles, south-central Sweden
  • 2019
  • Ingår i: Applied Geochemistry. - : Elsevier. - 0883-2927 .- 1872-9134. ; 110
  • Tidskriftsartikel (refereegranskat)abstract
    • Improved remediation strategies or predictive modelling of acid mine drainage (AMD) sites, require detailed understanding of the sulphide oxidation reaction pathways, as well as pollutant-source characterisation. In this study, ore minerals, solids and water-soluble fractions of an oxidising Cu–W–F skarn tailings in Yxsjöberg, Sweden, were chemically and isotopically (δ34S and δ18O) characterised to reveal sulphate (SO42−) sources, sulphide oxidation reaction pathways and historical environmental conditions in the tailings. δ34S was additionally used to trace the weathering of danalite [(Fe,Mn,Zn)4Be3(SiO4)3S], a rare and unstable sulphur-bearing silicate mineral containing high concentrations of beryllium (Be) and zinc (Zn). Eighteen subsamples from a drill core of the tailings were subjected to batch leaching tests to obtain water-soluble fractions, which reflected both existing pore-waters and easily-soluble secondary minerals. The tailings were categorised into three geochemical zones: (i) oxidised zone (OZ), (ii) transition zone (TZ) and (iii) unoxidised zone (UZ), based on prevailing pH, elemental concentrations and colour. The upper OZ (UOZ) showed a sharp depletion of sulphur (S) and relatively higher δ18OSO4 values (−3.0 to +0.1‰) whereas the underlying lower OZ (LOZ) showed S accumulation and lower δ18OSO4 values (−4.6 to −4.2‰). The higher δ18OSO4 suggested the role of atmospheric oxygen, O2 (as oxidant), contribution of evaporated rainwaters and/or evaporation in the upper zones of the tailings. The lower δ18OSO4 values were indicative of ferric iron (Fe3+) as oxidant and the possible incorporation of 16O into SO42− during its formation, most probably from snow melt or depleted rainwater. The δ34SSO4 values in the OZ (+2.3 to +2.4‰) suggested SO42− from pyrrhotite oxidation in the UOZ which has been subsequently mobilised to the LOZ. Low δ34S fractionation (+0.2 to +1.9‰) between SO42− in the OZ and pyrrhotite, as well as the low δ18OSO4 values in the LOZ suggested the complete oxidation of pyrrhotite by Fe3+, signalling that previously, a low pH (<3) prevailed in the tailings. Mineralogical observations confirmed that pyrrhotite was completely oxidised in the UOZ, with the formation of hydrous ferric oxides (HFOs) coatings. The observed current high δ18OSO4 and pH (3.9–4.5) values in the UOZ were attributed to decreased oxidation rate and silicate buffering, limiting the availability of aqueous Fe3+ and subsequent formation of HFOs. The δ34SSO4 signatures of the water-soluble SO42− in the TZ and UUZ suggested the dissolution of gypsum which precipitated from a leachate from the weathering of danalite in the UOZ. In the middle UZ, the δ34SSO4 (−0.8 to +0.6‰) and δ18OSO4 (−1.8 to −1.0‰) signatures corresponded to SO42− from a mixture of pyrite, pyrrhotite and chalcopyrite oxidation by O2 at the LOZ (i.e. oxidation front). Negative δ34S fractionation values (−3.0 to −1.6‰) between these minerals and the water-soluble SO42− were attributed to the potential formation of intermediate S species, due to the partial oxidation of the sulphides. Consequently, the S accumulation in the LOZ could be due to the likely formation of the intermediate S species and secondary pyrite identified in this zone. The lower UZ coincided with the groundwater table and registered consistent negative δ34SSO4 (−2.6 to −1.8‰) and δ18OSO4 (−7.6 to −4.4‰) values. These signatures were hypothesised to be controlled by SO42− from the mineralisation of organic S in peat underneath the tailings and/or H2S oxidation, with possible contribution from sulphide oxidation in the tailings. This study highlights the usefulness of δ34S and δ18O as tracers of geochemical processes and environmental conditions that have existed in the tailings.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  • Cabri, Louis J., et al. (författare)
  • A review of hexaferrum based on new mineralogical data
  • 2018
  • Ingår i: Mineralogical magazine. - : Mineralogical Society of Great Britain and Ireland. - 0026-461X .- 1471-8022. ; 82:3, s. 531-538
  • Tidskriftsartikel (refereegranskat)abstract
    • Hexaferrum, defined as an hcp Fe mineral containing varying amounts of Ru, Os, or Ir(Mochalov et al. 1998) was re-examined in the light of new analyses of similar alloys from the Loma Peguera and Loma Larga chromitites, in the central part of Loma Caribe peridotite, Cordillera Central of the Dominican Republic, together with a review of the phase chemistry inthe Fe-Ni-Ir and Fe-Ru-Ir systems. We conclude that the hcp (Fe,Ir) mineral corresponds to theε-phase of Raub et al. (1964) and should be differentiated from hexaferrum [(Fe,Os) and(Fe,Ru)] because it is separated by one to two miscibility gaps and therefore is not a continuous solid solution with Fe.
  •  
10.
  • Farré-de-Pablo, Júlia, et al. (författare)
  • Ophiolite hosted chromitite formed by supra-subduction zone peridotite –plume interaction
  • 2020
  • Ingår i: Geoscience Frontiers. - : Elsevier. - 1674-9871. ; 11:6, s. 2083-2102
  • Tidskriftsartikel (refereegranskat)abstract
    • Chromitite bodies hosted in peridotites typical of suboceanic mantle (s.l. ophiolitic) are found in the northern and central part of the Loma Caribe Peridotite in the Cordillera Central of the Dominican Republic. These chromitites are massive pods of small size (less than a few meters across) and veins that intrude both dunite and harzburgite. Compositionally, they are high-Cr chromitites [Cr# = Cr/(Cr+Al) atomic ratio = 0.71–0.83] singularly enriched in TiO2 (up to 1.25 wt.%), Fe2O3 (2.77–9.16 wt.%) as well as some trace elements (Ga, V, Co, Mn, and Zn) and PGE (up to 4548 ppb in whole-rock). This geochemical signature is unknown for chromitites hosted in oceanic upper mantle but akin to those chromites crystallized from mantle plume derived melts. Noteworthy, the melt estimated to be in equilibrium with such chromite from the Loma Caribe chromitites is similar to basalts derived from different source regions of a heterogeneous Caribbean mantle plume. This mantle plume is responsible for the formation of the Caribbean Large Igneous Province (CLIP). Dolerite dykes with back-arc basin basalt (BABB) and enriched mid-ocean ridge basalt (E-MORB) affinities commonly intrude the Loma Caribe Peridotite, and are interpreted as evidence of the impact that the Caribbean plume had in the off-axis magmatism of the back-arc basin, developed after the Caribbean island-arc extension in the Late Cretaceous. We propose a model in which chromitites were formed in the shallow portion of the back-arc mantle as a result of the metasomatic reaction between the supra-subduction zone (SSZ) peridotites and upwelling plume-related melts.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 42

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy