SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "hsv:(NATURVETENSKAP) hsv:(Geovetenskap och miljövetenskap) hsv:(Geokemi) ;pers:(Berggren Kleja Dan)"

Search: hsv:(NATURVETENSKAP) hsv:(Geovetenskap och miljövetenskap) hsv:(Geokemi) > Berggren Kleja Dan

  • Result 1-10 of 26
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Uddh Söderberg, Terese, 1976-, et al. (author)
  • Metal solubility and transport at a contaminated landfill site – From the source zone into the groundwater
  • 2019
  • In: Science of the Total Environment. - : Elsevier. - 0048-9697 .- 1879-1026. ; 668, s. 1064-1076
  • Journal article (peer-reviewed)abstract
    • Risks associated with metal contaminated sites are tightly linked to material leachability and contaminant mobility. In this study, metal solubility and transport were characterized within a glass waste landfill through i) lysimeter-collection of pore water and standardized batch leaching tests, ii) soil profiles extending from the landfill surface, through unsaturated soil underneath, and into the groundwater zone, and iii) groundwater samples upstream, at, and downstream of the landfill. The soil analyzes targeted both pseudo-total and geochemically active concentrations of contaminant metals (As, Cd, Pb, Sb) and basic soil geochemistry (pH, org. C, Fe,Mn). Water samples were analyzed for dissolved, colloid-bound and particulate metals, and speciation modelling of the aqueous phase was conducted. The results revealed a highly contaminated system, with mean metal concentrationsin the waste zone between 90 and 250 times the regional background levels. Despite severe contamination of the waste zone and high geochemically active fractions (80–100%) of all contaminant metals as well as elevated concentrations in landfill pore water, the concentrations of Cd and Pb decrease abruptly at the transition between landfill and underlying natural soil and no indication of groundwater contamination was found. The efficient cation retention is likely due to the high pH. However, the sorption of As and Sb is weaker at such high pH,which explains their higher mobility from the pore water zone into groundwater. The field soil:solution for Pb, ranging from 140 to 2,900,000 l kg−1), despite little variability in basic geochemical variables, which we suggest is due to waste material heterogeneity.
  •  
2.
  • Berggren Kleja, Dan, et al. (author)
  • Characterization of iron in floating surface films of some natural waters using EXAFS
  • 2012
  • In: Chemical Geology. - : Elsevier. - 0009-2541 .- 1872-6836. ; 326, s. 19-26
  • Journal article (peer-reviewed)abstract
    • Floating, iron bearing films have been observed in a wide range of environments, including wetlands, seep waters in ground water discharge areas, small rivers and lakes. To date, knowledge about their formation and composition is scarce. We have investigated the form of iron in floating iron-rich films of different origin, including a pond and a brook, as well as seep water pools of a groundwater discharge area. Sampling sites were located in southern (pond, brook) and central (seep pools) Sweden. Synchrotron-based X-ray absorption spectroscopy (EXAFS and XANES) allowed identification of the iron precipitates present in the films, without any pretreatment. The EXAFS data showed that the iron containing phase formed in the floating films varied in composition between the sites investigated. In the films from two ground water discharge areas, characterized by out-flowing iron(II) rich ground water being high in pH and low in DOC, the iron phase was completely dominated by ferrihydrite. In contrast, surface films sampled from the brook and the pond, the iron speciation showed a mixture of iron(III)-organic complexes and iron (hydr)oxide (most likely ferrihydrite). These waters were oxic and contained higher concentration of DOC than the seep water pools in the ground water discharge areas. The position of the pre-edge peak, which is sensitive to the oxidation state of iron, did not indicate occurrence of iron (II) in any of the films. Elemental composition of one film (seep water), suggested that films contained about one third of organic matter. Ferrihydrite is probably present as small particles with humic material sorbed onto surfaces or included in the particles, making the particles sufficiently hydrophobic to not settle without physical disturbance. The films are fragile and break easily down and become suspended upon disturbance. More studies are warranted in order to understand the mechanism of the formation of these fascinating films and their biogeochemical role.
  •  
3.
  • Sjöstedt, Carin, 1981-, et al. (author)
  • Iron speciation in soft-water lakes and soils as determined by EXAFS spectroscopy and geochemical modelling
  • 2013
  • In: Geochimica et Cosmochimica Acta. - : Elsevier BV. - 0016-7037 .- 1872-9533 .- 0046-564X. ; 105, s. 172-186
  • Journal article (peer-reviewed)abstract
    • Complexation of iron by organic matter can potentially compete with toxic metals for binding sites. Iron(III) forms both monomeric and di/trimeric complexes with fulvic and humic acids, but the nature and extent of complexation with natural organic matter samples from soft-water lakes has not been extensively studied. The aim of this study was to determine the coordination of iron in complexes with organic matter in two soft-water lakes and in the surrounding Oe soil horizons. Iron K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy was performed on particles and large colloids (>0.45. μm) collected by in-line pre-filtration, and on smaller colloids isolated both on an AGMP-1 anion-exchange column and by concentration using 1000. Da ultrafiltration. The results showed that iron(III) was mainly present in monomeric complexes with organic matter, both in the lake water smaller colloids and in the soil samples. Evidence for iron(III) (hydr)oxides was found for the lake particles, in the ultrafiltration retentates, and in some of the soils. Overall, the results suggest that complexation of iron(III) to organic matter prevents hydrolysis into polymeric forms. Strong complexation of iron(III) would lead to competition with other metals for organic-matter binding sites.
  •  
4.
  •  
5.
  • Uddh Söderberg, Terese, 1976-, et al. (author)
  • Challenges in geochemical modelling of metal(loid) solubility and binding mechanisms along a soil profile at a multi-contaminated site
  • 2024
  • In: Applied Geochemistry. - : Elsevier. - 0883-2927 .- 1872-9134. ; 170
  • Journal article (peer-reviewed)abstract
    • Recognising the need for robust models in predicting groundwater contamination risks from metal(loid)s in contaminated topsoil, this study focuses on the geochemical behaviour of As, Cd, Cu, Pb, Sb and Zn in one of Sweden’s most heavily contaminated areas. Samples were collected from the waste zone and underlying subsoil down to 5 meters and batch experiments were carried out to assess pH-dependent solubility. The results indicate that Cd, Cu, Pb and Zn are efficiently immobilized in the waste zone, while As(V) and Sb(V) are more easily leached. With the exception of Pb and Cu at high pH, the mobilized metals appear to be predominantly in a truly dissolved state, as confirmed by ultrafiltration at 10 kDa.Speciation modelling using Visual MINTEQ did not suggest a significant role of precipitates such as Zn or Pb arsenates and phosphates, although their involvement could not be ruled out. To better understand sorption/desorption patterns, a multi-surface geochemical model was established, drawing on the Stockholm Humic and CD-MUSIC models for organic matter and Fe/Al (hydr)oxide sorption. However, when default parameters were used, the model consistently overestimated the solubility of Cd, Cu, Pb and Zn in both the waste zone and the uncontaminated subsoil. In contrast, As(V) solubility was generally underestimated, also when the reactive surface area of the Fe- and Al (hydr)oxides was decreased in the model. The model's performance was better for Sb(V), though not without imperfections. When the parameters for organic matter were adjusted such that 100% of the solid-phase organic matter was active with respect to ion binding, but only 25% of the dissolved organic matter, the model description improved considerably for Pb and Cu in the upper soil layers. The model revealed distinct differences in the adsorption behaviour of the metal cations, with Pb being sorbed mostly to Fe/Al (hydroxides), whereas a considerable part of Cu was sorbed to organic matter, particularly in the waste zone.Possibly, the dissolution of easily weatherable metal-containing mineral phases may have contributed to the poor model performance for Cd, Zn and for Cu in the deeper soil layers, although other factors, such as a contribution of hydrous SiO2 or Mn oxides to metal binding, could not be ruled out. Metal sorption to carbonate phases may also have been a contributing factor in the waste zone. Lastly, the reactivity of Fe- and Al (hydr)oxides may have been overestimated by oxalate extraction when default parameters for high-surface-area ferrihydrite were applied. These findings provide valuable insights for environmental management and underscore the need for a more detailed characterization of metal(loid) sorption in contaminated soils, as well as the development of improved modelling strategies to enhance solubility predictions.
  •  
6.
  • Berggren Kleja, Dan, et al. (author)
  • Metallers mobilitet i mark
  • 2006
  • Reports (peer-reviewed)abstract
    • I rapporten beskrivs nuvarande kunskapsläge när det gäller metallers uppträdande imark. Riskbedömningar för metaller i förorenad mark diskuteras.De flesta metaller binds i viss utsträckning i marken, oftast genom olika ytreaktioner med markens organiska material eller med järn- och aluminiumoxider, ochibland även genom utfällningsreaktioner. I vilken omfattning detta sker beror avfaktorer som t.ex. pH, redoxförhållanden, löst organiskt material (DOC) i markvattnet, samt förekomst av konkurrerande joner. Det är också viktigt att beaktavilka former metallerna förekommer som i markvattnet. Komplexbildning medt.ex. DOC minskar i regel toxiciteten. För att bättre ta hänsyn till markkemiskaförhållanden i riskbedömningen bör geokemiska modeller komma till ökad användning.Metaller lösta i vattnet följer med när vattnet strömmar och kan transporterastill grund- och ytvatten eller tas upp av växter. Hur snabbt detta går beror, förutomkemiska och biologiska processer, även på en rad olika jordegenskaper. Till exempel innehåller vissa jordar s.k. makroporer vilka ger upphov till preferentiellt flöde.Detta innebär att en del av metallerna snabbare kan transporteras genom marken,förbi jordpartiklar där metallerna annars skulle bindas.De olika modeller som används för att beskriva påverkan av markförorening pågrundvatten kan delas in i två grupper: stationära modeller antar att källtermen ärkonstant och tar enbart hänsyn till den utspädning som sker i grundvattnet. Exempel på sådana modeller är den svenska riktvärdesmodellen, JAGG och RBCA. I detvå senare modellerna finns möjlighet att ta hänsyn till nedbrytning av organiskaämnen. Tidsberoende modeller antar en avklingande källterm och en tidsberoendetransport i grundvattnet, exempelvis RISC och TAC-modellen. För beräkning avtransport i grundvattnet tas hänsyn till flödes- och fastläggningsmekanismer somadvektion, dispersion och linjär sorption.Med hjälp av laktester kan man uppskatta den andel av metallföroreningen somär löslig i vatten. Denna information kan sedan användas för att beräkna adsorptionsparametrar (Kd-värden, m.m.) för spridningsmodeller. Laktester kan ibland gemissvisande resultat eftersom de orsakar utspädning av provet, bl.a. blir DOCkoncentrationerna alltför låga. Dessutom bör de inte användas för sulfidjordar.Geokemiska modeller kan användas för att förbättra tolkningen av laktester för attfå till stånd realistiska uppskattningar av Kd-värden.Det finns ett antal spridningsmodeller som kan användas för att bedöma riskenför spridning till grundvatten och ytvatten. De är kraftfulla verktyg som dock ännuinte använts i någon större utsträckning i Sverige. Detta beror på flera orsaker, bl.a.de hydrogeologiska förhållandena i Sverige, behovet av anpassningen av de modeller som är allmänt tillgängliga, svårigheter att ta fram bra dataunderlag samt ensvag tradition i att använda modeller och förstå modellresultat.Ett par angelägna forsknings- och utvecklingsinsatser är att ta fram bättre uppskattningar av metalladsorption i svensk mark, och att anpassa existerande spridningsmodeller för användning i riskbedömningar.
  •  
7.
  • Berggren Kleja, Dan, et al. (author)
  • Silver(I) Binding Properties of Organic Soil Materials Are Different from Those of Isolated Humic Substances
  • 2016
  • In: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 50:14, s. 7453-7460
  • Journal article (peer-reviewed)abstract
    • The solubility of silver(I) in many soils is controlled by complexation reactions with organic matter. In this work we have compared the ability of isolated humic and fulvic acids to bind silver(I) with that of mor and peat materials. One new data set for Suwannee River Fulvic Acid was produced, which was consistent with published data sets for isolated fulvic and humic acids. The ability of soil materials to bind silver(I) was studied as a function of pH in the range 2.5-5.0, at a wide range of silver(I)-to-soil ratios (10(-4.2) - 10(-1.9) mol kg(-1)). By calibrating the Stockholm Humic Model on the humic and fulvic acids data sets, we showed that binding of silver(I) to both types of soil materials was much stronger (up to 2 orders of magnitude) than predicted from the silver(I) binding properties of the isolated humic materials. Thus, the approach taken for many other metals, that is, to model solubility in soils by using metal and proton binding parameters derived from isolated humic and fulvic acids, cannot be used for silver(I). One possible explanation for the discrepancy could be that silver(I) predominately interacted with various biomolecules in the soil samples, instead of humic- and fulvic-acid type materials.
  •  
8.
  • Campos-Pereira, Hugo, et al. (author)
  • Effect of pH, surface charge and soil properties on the solid-solution partitioning of perfluoroalkyl substances (PFASs) in a wide range of temperate soils
  • 2023
  • In: Chemosphere. - : PERGAMON-ELSEVIER SCIENCE LTD. - 0045-6535 .- 1879-1298. ; 321
  • Journal article (peer-reviewed)abstract
    • The pH-dependent soil-water partitioning of six perfluoroalkyl substances (PFASs) of environmental concern (PFOA, PFDA, PFUnDA, PFHxS, PFOS and FOSA), was investigated for 11 temperate mineral soils and related to soil properties such as organic carbon content (0.2-3%), concentrations of Fe and Al (hydr)oxides, and texture. PFAS sorption was positively related to the perfluorocarbon chain length of the molecule, and inversely related to solution pH for all substances. The negative slope between log Kd and pH became steeper with increasing perfluorocarbon chain length of the PFAS (r2 = 0.75, p <= 0.05). Organic carbon (OC) alone was a poor predictor of the partitioning for all PFASs, except for FOSA (r2 = 0.71), and the OC-normalized PFAS partitioning, as derived from organic soil materials, underestimated PFAS sorption to the soils. Multiple linear regression suggested sorption contributions (p <= 0.05) from OC for perfluorooctane sulfonate (PFOS) and FOSA, and Fe/Al (hydr) oxides for PFOS, FOSA, and perfluorodecanoate (PFDA). FOSA was the only substance under study for which there was a statistically significant correlation between its binding and soil texture (silt + clay). To predict PFAS sorption, the surface net charge of the soil organic matter fraction of all soils was calculated using the Stockholm Humic Model. When calibrated against charge-dependent PFAS sorption to a peat (Oe) material, the derived model significantly underestimated the measured Kd values for 10 out of 11 soils. To conclude, additional
  •  
9.
  • Formentini, Thiago, et al. (author)
  • Immobilizing arsenic in contaminated anoxic aquifer sediment using sulfidated and uncoated zero-valent iron (ZVI)
  • 2024
  • In: Journal of Hazardous Materials. - 0304-3894 .- 1873-3336. ; 462
  • Journal article (peer-reviewed)abstract
    • Arsenic (As) is carcinogenic and of major concern in groundwater. We collected sediment material from a contaminated anoxic aquifer in Sweden and investigated the immobilization of As by four commercial zero-valent iron (ZVI) particles. Solid-phase As and Fe speciation was assessed using X-ray absorption spectroscopy (XAS) and solution-phase As speciation using chromatographic separation. Without ZVI addition, arsenite dominated in solution and As(V) species in the solid phase. Adding ZVI caused a sharp increase in solution pH (9.3-9.8), favoring As oxidation despite a lowered redox potential. ZVI greatly improved As retention by complex binding of arsenate to the Fe(III) (hydr)oxides formed by ZVI corrosion. Uncoated ZVI, both in nano-and microscale, performed better than their sulfidated counterparts, partly due to occlusion of As by the Fe(III) (hydr) oxides formed. The effect of particle size (micro vs. nano ZVI) on As immobilization was small, likely because immobilization was related to the corrosion products formed, rather than the initial size of the particles. Our results provide a strong geochemical background for the application of ZVI particles to remove As in contaminated aquifers under anoxic conditions and illustrate that immobilization mechanisms can differ between ZVI in As spiked solutions and sediment suspensions.Environmental implication: Arsenic ranks first on the list by the US ATSDR of substances posing a threat to human health and the WHO considers groundwater the riskiest source for human intake of As. However, dealing with As contamination remains a scientific challenge. We studied the immobilization of groundwater As by commercially available ZVI particles at field-realistic conditions. Arsenic immobilization was highly efficient in most cases, and the results suggest this is a promising in situ strategy with long-term performance. Our results provide a strong geochemical background for using ZVI to remove As in contaminated anoxic aquifers.
  •  
10.
  • Fröberg, Mats, et al. (author)
  • Long-term effects of experimental fertilization and soil warming on dissolved organic matter leaching from a spruce forest in Northern Sweden
  • 2013
  • In: Geoderma. - : Elsevier BV. - 0016-7061 .- 1872-6259. ; 200-201, s. 172-179
  • Journal article (peer-reviewed)abstract
    • Nitrogen deposition and increasing temperature are two of the major large-scale changes projected for coming decades and the effect of this change on dissolved organic matter is largely unknown. We have utilized a long-term fertilization and soil warming experiment in Northern Sweden to study the effects of increased nutrient levels and increased temperature on DOC transport under the O horizon. The site is N limited and mean annual temperature 2. °C. Experimental fertilization with ammonium nitrate and a physiological mixture of other macro- and micro-nutrients has been going on for 22. years and soil warming, 5. °C above ambient soil temperature for 14. years, prior to the study. Experimental plots have been irrigated to avoid drying and we also studied the effect of this long-term irrigation on DOC by establishing control plots receiving no irrigation.DOC concentrations and fluxes under the O horizon were approximately 50% higher in fertilized plots than in non-fertilized control plots. We did not find any statistically significant effect of soil warming. There was a statistically significant effect of long-term irrigation on DOC with higher DOC concentration and fluxes in irrigated plots than in plots without irrigation. There were no major effects on DOC quality measured by specific UV absorbance. Fertilization approximately doubled soil organic matter stocks in the O horizon, whereas there were no such effects of warming or irrigation on soil organic matter amounts. There was no statistically significant treatment effect on DOC collected from the B horizon. We hypothesize that the positive effect of fertilization on DOC is related to increased soil C stocks.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 26
Type of publication
journal article (22)
conference paper (3)
reports (1)
Type of content
peer-reviewed (25)
other academic/artistic (1)
Author/Editor
Gustafsson, Jon-Pett ... (15)
Persson, Ingmar (10)
Sjöstedt, Carin (7)
Gustafsson, Jon Pett ... (5)
Löv, Åsa (5)
show more...
Cornelis, Geert (4)
Larsbo, Mats (3)
Fröberg, Mats (3)
Van Schaik, Joris (3)
Sjöstedt, Carin, 198 ... (3)
Jarsjö, Jerker (2)
Ahrens, Lutz (2)
Åström, Mats E., 196 ... (2)
Boye, Kristin (2)
Augustsson, Anna (2)
Uddh Söderberg, Tere ... (2)
Shibutani, Satomi (2)
Tiberg, Charlotta (2)
Hassellöv, Martin, 1 ... (1)
Svensson, Magnus (1)
Kessler, Vadim (1)
Jarvis, Nicholas (1)
Öborn, Ingrid (1)
Greger, Maria (1)
Ullberg, M (1)
Kumpiene, Jurate (1)
Borg, Hans (1)
Enell, Anja (1)
Mench, Michel (1)
Svensson, P. Andreas ... (1)
Larsson, Maja (1)
Norrström, Ann-Catri ... (1)
Elert, Mark (1)
Jarvis, las (1)
Nakata, Satomi (1)
Grip, Harald (1)
Strömgren, Monika (1)
Campos-Pereira, Hugo (1)
Kikuchi, Johannes (1)
Pettersson, Michael (1)
Campos Pereira, H. (1)
Ledin, Stig (1)
Köhler, Stephan J. (1)
Kleja, Dan Berggren (1)
Hesterberg, Dean (1)
Formentini, Thiago (1)
Leicht, Kathrin (1)
Tipping, E (1)
Oromieh, Aidin Geran ... (1)
show less...
University
Swedish University of Agricultural Sciences (22)
Royal Institute of Technology (14)
Stockholm University (3)
Linnaeus University (2)
Luleå University of Technology (1)
Linköping University (1)
show more...
Swedish Environmental Protection Agency (1)
show less...
Language
English (25)
Swedish (1)
Research subject (UKÄ/SCB)
Natural sciences (26)
Agricultural Sciences (8)
Engineering and Technology (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view