SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "hsv:(NATURVETENSKAP) hsv:(Geovetenskap och miljövetenskap) hsv:(Klimatforskning) ;pers:(Olin Stefan)"

Sökning: hsv:(NATURVETENSKAP) hsv:(Geovetenskap och miljövetenskap) hsv:(Klimatforskning) > Olin Stefan

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gustafson, Adrian, et al. (författare)
  • Nitrogen restricts future sub-Arctic treeline advance in an individual-based dynamic vegetation model
  • 2021
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 18, s. 6329-6347
  • Tidskriftsartikel (refereegranskat)abstract
    • Arctic environmental change induces shifts in high-latitude plant community composition and stature with implications for Arctic carbon cycling and energy exchange. Two major components of change in high-latitude ecosystems are the advancement of trees into tundra and the increased abundance and size of shrubs. How future changes in key climatic and environmental drivers will affect distributions of major ecosystem types is an active area of research. Dynamic vegetation models (DVMs) offer a way to investigate multiple and interacting drivers of vegetation distribution and ecosystem function. We employed the LPJ-GUESS tree-individual-based DVM over the Torneträsk area, a sub-Arctic landscape in northern Sweden. Using a highly resolved climate dataset to downscale CMIP5 climate data from three global climate models and two 21st-century future scenarios (RCP2.6 and RCP8.5), we investigated future impacts of climate change on these ecosystems. We also performed model experiments where we factorially varied drivers (climate, nitrogen deposition and [CO2]) to disentangle the effects of each on ecosystem properties and functions. Our model predicted that treelines could advance by between 45 and 195 elevational metres by 2100, depending on the scenario. Temperature was a strong driver of vegetation change, with nitrogen availability identified as an important modulator of treeline advance. While increased CO2 fertilisation drove productivity increases, it did not result in range shifts of trees. Treeline advance was realistically simulated without any temperature dependence on growth, but biomass was overestimated. Our finding that nitrogen cycling could modulate treeline advance underlines the importance of representing plant-soil interactions in models to project future Arctic vegetation change.
  •  
2.
  • Tang, Jing, et al. (författare)
  • Drivers of dissolved organic carbon export in a subarctic catchment : Importance of microbial decomposition, sorption-desorption, peatland and lateral flow
  • 2018
  • Ingår i: Science of the Total Environment. - : Elsevier BV. - 0048-9697 .- 1879-1026. ; 622, s. 260-274
  • Tidskriftsartikel (refereegranskat)abstract
    • Tundra soils account for 50% of global stocks of soil organic carbon (SOC), and it is expected that the amplified climate warming in high latitude could cause loss of this SOC through decomposition. Decomposed SOC could become hydrologically accessible, which increase downstream dissolved organic carbon (DOC) export and subsequent carbon release to the atmosphere, constituting a positive feedback to climate warming. However, DOC export is often neglected in ecosystem models. In this paper, we incorporate processes related to DOC production, mineralization, diffusion, sorption-desorption, and leaching into a customized arctic version of the dynamic ecosystem model LPJ-GUESS in order to mechanistically model catchment DOC export, and to link this flux to other ecosystem processes. The extended LPJ-GUESS is compared to observed DOC export at Stordalen catchment in northern Sweden. Vegetation communities include flood-tolerant graminoids (Eriophorum) and Sphagnum moss, birch forest and dwarf shrub communities. The processes, sorption-desorption and microbial decomposition (DOC production and mineralization) are found to contribute most to the variance in DOC export based on a detailed variance-based Sobol sensitivity analysis (SA) at grid cell-level. Catchment-level SA shows that the highest mean DOC exports come from the Eriophorum peatland (fen). A comparison with observations shows that the model captures the seasonality of DOC fluxes. Two catchment simulations, one without water lateral routing and one without peatland processes, were compared with the catchment simulations with all processes. The comparison showed that the current implementation of catchment lateral flow and peatland processes in LPJ-GUESS are essential to capture catchment-level DOC dynamics and indicate the model is at an appropriate level of complexity to represent the main mechanism of DOC dynamics in soils. The extended model provides a new tool to investigate potential interactions among climate change, vegetation dynamics, soil hydrology and DOC dynamics at both stand-alone to catchment scales.
  •  
3.
  • Engström, Kerstin, et al. (författare)
  • Impacts of climate mitigation strategies in the energy sector on global land use and carbon balance
  • 2017
  • Ingår i: Earth System Dynamics. - : Copernicus GmbH. - 2190-4979 .- 2190-4987. ; 8:3, s. 773-799
  • Tidskriftsartikel (refereegranskat)abstract
    • Reducing greenhouse gas emissions to limit damage to the global economy climate-change-induced and secure the livelihoods of future generations requires ambitious mitigation strategies. The introduction of a global carbon tax on fossil fuels is tested here as a mitigation strategy to reduce atmospheric CO2 concentrations and radiative forcing. Taxation of fossil fuels potentially leads to changed composition of energy sources, including a larger relative contribution from bioenergy. Further, the introduction of a mitigation strategy reduces climate-change-induced damage to the global economy, and thus can indirectly affect consumption patterns and investments in agricultural technologies and yield enhancement. Here we assess the implications of changes in bioenergy demand as well as the indirectly caused changes in consumption and crop yields for global and national cropland area and terrestrial biosphere carbon balance. We apply a novel integrated assessment modelling framework, combining three previously published models (a climate-economy model, a socio-economic land use model and an ecosystem model). We develop reference and mitigation scenarios based on the narratives and key elements of the shared socio-economic pathways (SSPs). Taking emissions from the land use sector into account, we find that the introduction of a global carbon tax on the fossil fuel sector is an effective mitigation strategy only for scenarios with low population development and strong sustainability criteria (SSP1 Taking the green road). For scenarios with high population growth, low technological development and bioenergy production the high demand for cropland causes the terrestrial biosphere to switch from being a carbon sink to a source by the end of the 21st century.
  •  
4.
  • Lu, Zhengyao, et al. (författare)
  • Natural decadal variability of global vegetation growth in relation to major decadal climate modes
  • 2023
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326 .- 1748-9318. ; 18:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The ongoing climate change can modulate the behavior of global vegetation and influence the terrestrial biosphere carbon sink. Past observation-based studies have mainly focused on the linear trend or interannual variability of the vegetation greenness, but could not explicitly deal with the effect of natural decadal variability due to the short length of observations. Here we put the variabilities revealed by remote sensing-based global leaf area index (LAI) from 1982 to 2015 into a long-term perspective with the help of ensemble Earth system model simulations of the historical period 1850-2014, with a focus on the low-frequency variability in the global LAI during the growing season. Robust decadal variability in the observed and modelled LAI was revealed across global terrestrial ecosystems, and it became stronger toward higher latitudes, accounting for over 50% of the total variability north of 40 degrees N. The linkage of LAI decadal variability to major natural decadal climate modes, such as the El Nino-Southern Oscillation decadal variability (ENSO-d), the Pacific decadal oscillation (PDO), and the Atlantic multidecadal oscillation (AMO), was analyzed. ENSO-d affects LAI by altering precipitation over large parts of tropical land. The PDO exerts opposite impacts on LAI in the tropics and extra-tropics due to the compensation between the effects of temperature and growing season length. The AMO effects are mainly associated with anomalous precipitation in North America and Europe but are mixed with long-term climate change impacts due to the coincident phase shift of the AMO which also induces North Atlantic basin warming. Our results suggest that the natural decadal variability of LAI can be largely explained by these decadal climate modes (on average 20% of the variance, comparable to linear changes, and over 40% in some ecosystems) which also can be potentially important in inducing the greening of the Earth of the past decades.
  •  
5.
  • Scaini, Anna, et al. (författare)
  • Pathways from research to sustainable development: Insights from ten research projects in sustainability and resilience
  • 2024
  • Ingår i: AMBIO. - : Springer Nature. - 0044-7447 .- 1654-7209. ; 53
  • Tidskriftsartikel (refereegranskat)abstract
    • Drawing on collective experience from ten collaborative research projects focused on the Global South, we identify three major challenges that impede the translation of research on sustainability and resilience into better-informed choices by individuals and policy-makers that in turn can support transformation to a sustainable future. The three challenges comprise: (i) converting knowledge produced during research projects into successful knowledge application; (ii) scaling up knowledge in time when research projects are short-term and potential impacts are long-term; and (iii) scaling up knowledge across space, from local research sites to larger-scale or even global impact. Some potential pathways for funding agencies to overcome these challenges include providing targeted prolonged funding for dissemination and outreach, and facilitating collaboration and coordination across different sites, research teams, and partner organizations. By systematically documenting these challenges, we hope to pave the way for further innovations in the research cycle.
  •  
6.
  • Deryng, Delphine, et al. (författare)
  • Regional disparities in the beneficial effects of rising CO2 concentrations on crop water productivity
  • 2016
  • Ingår i: Nature Climate Change. - : Springer Science and Business Media LLC. - 1758-678X .- 1758-6798. ; 6:8, s. 786-790
  • Tidskriftsartikel (refereegranskat)abstract
    • Rising atmospheric CO2 concentrations ([CO2 ]) are expected to enhance photosynthesis and reduce crop water use. However, there is high uncertainty about the global implications of these effects for future crop production and agricultural water requirements under climate change. Here we combine results from networks of field experiments and global crop models to present a spatially explicit global perspective on crop water productivity (CWP, the ratio of crop yield to evapotranspiration) for wheat, maize, rice and soybean under elevated [CO2 ] and associated climate change projected for a high-end greenhouse gas emissions scenario. We find CO2 effects increase global CWP by 10[0;47]%-27[7;37]% (median[interquartile range] across the model ensemble) by the 2080s depending on crop types, with particularly large increases in arid regions (by up to 48[25;56]% for rainfed wheat). If realized in the fields, the effects of elevated [CO2 ] could considerably mitigate global yield losses whilst reducing agricultural consumptive water use (4-17%). We identify regional disparities driven by differences in growing conditions across agro-ecosystems that could have implications for increasing food production without compromising water security. Finally, our results demonstrate the need to expand field experiments and encourage greater consistency in modelling the effects of rising [CO2 ] across crop and hydrological modelling communities.
  •  
7.
  • Eckes-Shephard, Annemarie, et al. (författare)
  • State-of-the-art capabilities in LPJ-GUESS
  • 2022
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • LPJ-GUESS is an advanced DGVM including detailed forest demography and management, croplands, wetlands, specialised arctic processes, emissions of nonCO2 GHGs and a highly flexible land-use change scheme which tracks transitions between different land-uses. It is the vegetation component of the EC-Earth CMIP6 ESM, the RCA-GUESS regional ESM, and also has a European mode operating at tree species level.
  •  
8.
  • Franke, James A., et al. (författare)
  • The GGCMI Phase 2 experiment : Global gridded crop model simulations under uniform changes in CO2, temperature, water, and nitrogen levels (protocol version 1.0)
  • 2020
  • Ingår i: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X .- 1991-9603. ; 13:5, s. 2315-2336
  • Tidskriftsartikel (refereegranskat)abstract
    • Concerns about food security under climate change motivate efforts to better understand future changes in crop yields. Process-based crop models, which represent plant physiological and soil processes, are necessary tools for this purpose since they allow representing future climate and management conditions not sampled in the historical record and new locations to which cultivation may shift. However, process-based crop models differ in many critical details, and their responses to different interacting factors remain only poorly understood. The Global Gridded Crop Model Intercomparison (GGCMI) Phase 2 experiment, an activity of the Agricultural Model Intercomparison and Improvement Project (AgMIP), is designed to provide a systematic parameter sweep focused on climate change factors and their interaction with overall soil fertility, to allow both evaluating model behavior and emulating model responses in impact assessment tools. In this paper we describe the GGCMI Phase 2 experimental protocol and its simulation data archive. A total of 12 crop models simulate five crops with systematic uniform perturbations of historical climate, varying CO2, temperature, water supply, and applied nitrogen ("CTWN") for rainfed and irrigated agriculture, and a second set of simulations represents a type of adaptation by allowing the adjustment of growing season length. We present some crop yield results to illustrate general characteristics of the simulations and potential uses of the GGCMI Phase 2 archive. For example, in cases without adaptation, modeled yields show robust decreases to warmer temperatures in almost all regions, with a nonlinear dependence that means yields in warmer baseline locations have greater temperature sensitivity. Inter-model uncertainty is qualitatively similar across all the four input dimensions but is largest in high-latitude regions where crops may be grown in the future.
  •  
9.
  • Frieler, Katja, et al. (författare)
  • Understanding the weather signal in national crop-yield variability
  • 2017
  • Ingår i: Earth's Future. - 2328-4277. ; 5:6, s. 605-616
  • Tidskriftsartikel (refereegranskat)abstract
    • Year-to-year variations in crop yields can have major impacts on the livelihoods of subsistence farmers and may trigger significant global price fluctuations, with severe consequences for people in developing countries. Fluctuations can be induced by weather conditions, management decisions, weeds, diseases, and pests. Although an explicit quantification and deeper understanding of weather-induced crop-yield variability is essential for adaptation strategies, so far it has only been addressed by empirical models. Here, we provide conservative estimates of the fraction of reported national yield variabilities that can be attributed to weather by state-of-the-art, process-based crop model simulations. We find that observed weather variations can explain more than 50% of the variability in wheat yields in Australia, Canada, Spain, Hungary, and Romania. For maize, weather sensitivities exceed 50% in seven countries, including the United States. The explained variance exceeds 50% for rice in Japan and South Korea and for soy in Argentina. Avoiding water stress by simulating yields assuming full irrigation shows that water limitation is a major driver of the observed variations in most of these countries. Identifying the mechanisms leading to crop-yield fluctuations is not only fundamental for dampening fluctuations, but is also important in the context of the debate on the attribution of loss and damage to climate change. Since process-based crop models not only account for weather influences on crop yields, but also provide options to represent human-management measures, they could become essential tools for differentiating these drivers, and for exploring options to reduce future yield fluctuations.
  •  
10.
  • Krause, Andreas, et al. (författare)
  • Global consequences of afforestation and bioenergy cultivation on ecosystem service indicators
  • 2017
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 14:21, s. 4829-4850
  • Tidskriftsartikel (refereegranskat)abstract
    • Land management for carbon storage is discussed as being indispensable for climate change mitigation because of its large potential to remove carbon dioxide from the atmosphere, and to avoid further emissions from deforestation. However, the acceptance and feasibility of land-based mitigation projects depends on potential side effects on other important ecosystem functions and their services. Here, we use projections of future land use and land cover for different land-based mitigation options from two land-use models (IMAGE and MAgPIE) and evaluate their effects with a global dynamic vegetation model (LPJ-GUESS). In the landuse models, carbon removal was achieved either via growth of bioenergy crops combined with carbon capture and storage, via avoided deforestation and afforestation, or via a combination of both. We compare these scenarios to a reference scenario without land-based mitigation and analyse the LPJ-GUESS simulations with the aim of assessing synergies and trade-offs across a range of ecosystem service indicators: Carbon storage, surface albedo, evapotranspiration, water runoff, crop production, nitrogen loss, and emissions of biogenic volatile organic compounds. In our mitigation simulations cumulative carbon storage by year 2099 ranged between 55 and 89 GtC. Other ecosystem service indicators were influenced heterogeneously both positively and negatively, with large variability across regions and land-use scenarios. Avoided deforestation and afforestation led to an increase in evapotranspiration and enhanced emissions of biogenic volatile organic compounds, and to a decrease in albedo, runoff, and nitrogen loss. Crop production could also decrease in the afforestation scenarios as a result of reduced crop area, especially for MAgPIE land-use patterns, if assumed increases in crop yields cannot be realized. Bioenergy-based climate change mitigation was projected to affect less area globally than in the forest expansion scenarios, and resulted in less pronounced changes in most ecosystem service indicators than forest-based mitigation, but included a possible decrease in nitrogen loss, crop production, and biogenic volatile organic compounds emissions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16
Typ av publikation
tidskriftsartikel (15)
konferensbidrag (1)
Typ av innehåll
refereegranskat (15)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Smith, Benjamin (6)
Müller, Christoph (6)
Arneth, Almut (5)
Pugh, Thomas A M (5)
Lindeskog, Mats (4)
Schurgers, Guy (3)
visa fler...
Ciais, Philippe (2)
Ahlström, Anders (2)
Miller, Paul A. (2)
Doelman, Jonathan C. (2)
Humpenöder, Florian (2)
Popp, Alexander (2)
Stehfest, Elke (2)
Yang, Hong (2)
Olefeldt, David (1)
Pilesjö, Petter (1)
Manzoni, Stefano, 19 ... (1)
Chen, Deliang, 1961 (1)
Rousk, Johannes (1)
Arneth, A. (1)
Kain, Jaan-Henrik, 1 ... (1)
Wamsler, Christine (1)
Scaini, Anna (1)
Fjelde, Hanne (1)
Olsson, Lennart (1)
Höjer, Mattias (1)
Lindström, Johan (1)
Sitch, Stephen (1)
Zhang, Qiong (1)
Vico, Giulia (1)
Jönsson, Anna Maria (1)
Li, Wei (1)
Mcconville, Jennifer (1)
Tompsett, Anna (1)
Zapata, Patrik, 1967 (1)
Zapata Campos, María ... (1)
Fridahl, Mathias, 19 ... (1)
Murray-Tortarolo, Gu ... (1)
Hassler, John (1)
Engström, Kerstin (1)
Björk, Robert G., 19 ... (1)
Hansson, Anders, 197 ... (1)
Nilsson, David, 1968 ... (1)
Ekblom, Anneli (1)
Bayer, A. D. (1)
Pugh, T. A.M. (1)
Tang, Jing (1)
Siewert, Matthias B. (1)
Poska, Anneli (1)
Bodin, Per (1)
visa färre...
Lärosäte
Lunds universitet (16)
Stockholms universitet (4)
Göteborgs universitet (3)
Umeå universitet (1)
Kungliga Tekniska Högskolan (1)
Uppsala universitet (1)
visa fler...
Linköpings universitet (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (16)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (16)
Lantbruksvetenskap (4)
Samhällsvetenskap (2)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy