SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "hsv:(NATURVETENSKAP) hsv:(Geovetenskap och miljövetenskap) hsv:(Klimatforskning) ;pers:(Scholze Marko)"

Sökning: hsv:(NATURVETENSKAP) hsv:(Geovetenskap och miljövetenskap) hsv:(Klimatforskning) > Scholze Marko

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Grant, Jennifer, et al. (författare)
  • Working towards a global-scale vegetationwater product from smos optical depth
  • 2014
  • Ingår i: 2014 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). - 2153-6996 .- 2153-7003.
  • Konferensbidrag (refereegranskat)abstract
    • In this study, vegetation optical depth from ESA's Soil Moisture and Ocean Salinity (SMOS) satellite mission is combined with other existing remote sensing, meteorological and literature data in order to obtain values of gravimetric vegetation water content (M-g). The methodology combines an effective medium model valid at passive microwave frequencies with a vegetation dielectric constant model. The algorithm is calibrated for 11 global vegetation classes. The resulting product consists of temporally dynamic similar to 25 km global grids of Mg. The first maps clearly show seasonal differences in vegetation water, which vary for the different continental regions due to variations in e.g. latitude, climate and landcover type. This new vegetation water product is unique and offers important complementary information to existing vegetation indices.
  •  
2.
  • Kaminski, Thomas, et al. (författare)
  • Assimilation of atmospheric CO2observations from space can support national CO2emission inventories
  • 2022
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9318 .- 1748-9326. ; 17:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The Paris Agreement establishes a transparency framework for anthropogenic carbon dioxide (CO2) emissions. It's core component are inventory-based national greenhouse gas emission reports, which are complemented by independent estimates derived from atmospheric CO2 measurements combined with inverse modelling. It is, however, not known whether such a Monitoring and Verification Support (MVS) capacity is capable of constraining estimates of fossil-fuel emissions to an extent that is sufficient to provide valuable additional information. The CO2 Monitoring Mission (CO2M), planned as a constellation of satellites measuring column-integrated atmospheric CO2 concentration (XCO2), is expected to become a key component of such an MVS capacity. Here we provide a novel assessment of the potential of a comprehensive data assimilation system using simulated XCO2 and other observations to constrain fossil fuel CO2 emission estimates for an exemplary 1-week period in 2008. We find that CO2M enables useful weekly estimates of country-scale fossil fuel emissions independent of national inventories. When extrapolated from the weekly to the annual scale, uncertainties in emissions are comparable to uncertainties in inventories, so that estimates from inventories and from the MVS capacity can be used for mutual verification. We further demonstrate an alternative, synergistic mode of operation, with the purpose of delivering a best fossil fuel emission estimate. In this mode, the assimilation system uses not only XCO2 and the other data streams of the previous (verification) mode, but also the inventory information. Finally, we identify further steps towards an operational MVS capacity.
  •  
3.
  • Wu, Mousong, et al. (författare)
  • Simultaneous assimilation of remotely sensed soil moisture and FAPAR for improving terrestrial carbon fluxes at multiple sites using CCDAS
  • 2018
  • Ingår i: Remote Sensing. - : MDPI AG. - 2072-4292. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The carbon cycle of the terrestrial biosphere plays a vital role in controlling the global carbon balance and, consequently, climate change. Reliably modeled CO2 fluxes between the terrestrial biosphere and the atmosphere are necessary in projections of policy strategies aiming at constraining carbon emissions and of future climate change. In this study, SMOS (Soil Moisture and Ocean Salinity) L3 soil moisture and JRC-TIP FAPAR (Joint Research Centre-Two-stream Inversion Package Fraction of Absorbed Photosynthetically Active Radiation) data with respective original resolutions at 10 sites were used to constrain the process-based terrestrial biosphere model, BETHY (Biosphere, Energy Transfer and Hydrology), using the carbon cycle data assimilation system (CCDAS). We find that simultaneous assimilation of these two datasets jointly at all 10 sites yields a set of model parameters that achieve the best model performance in terms of independent observations of carbon fluxes as well as soil moisture. Assimilation in a single-site mode or using only a single dataset tends to over-adjust related parameters and deteriorates the model performance of a number of processes. The optimized parameter set derived from multi-site assimilation with soil moisture and FAPAR also improves, when applied at global scale simulations, the model-data fit against atmospheric CO2. This study demonstrates the potential of satellite-derived soil moisture and FAPAR when assimilated simultaneously in a model of the terrestrial carbon cycle to constrain terrestrial carbon fluxes. It furthermore shows that assimilation of soil moisture data helps to identity structural problems in the underlying model, i.e., missing management processes at sites covered by crops and grasslands.
  •  
4.
  • Kaminski, Thomas, et al. (författare)
  • Assessing the constraint of atmospheric CO2 and NO2 measurements from space on city-scale fossil fuel CO2 emissions in a data assimilation system
  • 2022
  • Ingår i: Frontiers in Remote Sensing. - : Frontiers Media SA. - 2673-6187. ; 3
  • Tidskriftsartikel (refereegranskat)abstract
    • The European Copernicus programme plans to install a constellation of multiple polar orbiting satellites (Copernicus Anthropogenic CO2 Monitoring Mission, CO2M mission) for observing atmospheric CO2 content with the aim to estimate fossil fuel CO2 emissions. We explore the impact of potential CO2M observations of column-averaged CO2 (XCO2), nitrogen dioxide (NO2), and aerosols in a 200 × 200 km2 domain around Berlin. For the quantification of anticipated XCO2 random and systematic errors we developed and applied new error parameterisation formulae based on artificial neural networks. For the interpretation of these data, we further established a CCFFDAS modelling chain from parameters of emission models to XCO2 and NO2 observations to simulate the 24 h periods preceeding simulated CO2M overpasses over the study area. For one overpass in winter and one in summer, we present a number of assessments of observation impact in terms of the posterior uncertainty in fossil fuel emissions on scales ranging from 2 to 200 km. This means the assessments include temporal and spatial scales typically not covered by inventories. The assessments differentiate the fossil fuel CO2 emissions into two sectors, an energy generation sector (power plants) and the complement, which we call “other sector.” We find that combined measurements of XCO2 and aerosols provide a powerful constraint on emissions from larger power plants; the uncertainty in fossil fuel emissions from the largest three power plants in the domain was reduced by 60%–90% after assimilating the observations. Likewise, these measurements achieve an uncertainty reduction for the other sector that increases when aggregated to larger spatial scales. When aggregated over Berlin the uncertainty reduction for the other sector varies between 28% and 48%. Our assessments show a considerable contribution of aerosol observations onboard CO2M to the constraint of the XCO2 measurements on emissions from all power plants and for the other sector on all spatial scales. NO2 measurements onboard CO2M provide a powerful additional constraint on the emissions from power plants and from the other sector. We further apply a Jacobian representation of the CCFFDAS modelling chain to decompose a simulated CO2 column in terms of spatial emission impact. This analysis reveals the complex structure of the footprint of an observed CO2 column, which indicates the limits of simple mass balances approaches for interpretation of such observations.
  •  
5.
  • Monteil, Guillaume, et al. (författare)
  • The regional European atmospheric transport inversion comparison, EUROCOM : First results on European-wide terrestrial carbon fluxes for the period 2006-2015
  • 2020
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 20:20, s. 12063-12091
  • Tidskriftsartikel (refereegranskat)abstract
    • Atmospheric inversions have been used for the past two decades to derive large-scale constraints on the sources and sinks of CO2 into the atmosphere. The development of dense in situ surface observation networks, such as ICOS in Europe, enables in theory inversions at a resolution close to the country scale in Europe. This has led to the development of many regional inversion systems capable of assimilating these high-resolution data, in Europe and elsewhere. The EUROCOM (European atmospheric transport inversion comparison) project is a collaboration between seven European research institutes, which aims at producing a collective assessment of the net carbon flux between the terrestrial ecosystems and the atmosphere in Europe for the period 2006 2015. It aims in particular at investigating the capacity of the inversions to deliver consistent flux estimates from the country scale up to the continental scale. The project participants were provided with a common database of in situ-observed CO2 concentrations (including the observation sites that are now part of the ICOS network) and were tasked with providing their best estimate of the net terrestrial carbon flux for that period, and for a large domain covering the entire European Union. The inversion systems differ by the transport model, the inversion approach, and the choice of observation and prior constraints, enabling us to widely explore the space of uncertainties. This paper describes the intercomparison protocol and the participating systems, and it presents the first results from a reference set of inversions, at the continental scale and in four large regions. At the continental scale, the regional inversions support the assumption that European ecosystems are a relatively small sink (-0:21 ± 0:2 Pg C yr-1). We find that the convergence of the regional inversions at this scale is not better than that obtained in state-of-the-art global inversions. However, more robust results are obtained for subregions within Europe, and in these areas with dense observational coverage, the objective of delivering robust countryscale flux estimates appears achievable in the near future.
  •  
6.
  • Dahlén, Unn, et al. (författare)
  • Spatiotemporal reconstructions of global CO2-fluxes using Gaussian Markov random fields
  • 2020
  • Ingår i: Environmetrics. - : Wiley. - 1180-4009 .- 1099-095X. ; 31:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Atmospheric inverse modeling is a method for reconstructing historical fluxes of green-house gas between land and atmosphere, using observed atmospheric concentrations and an atmospheric tracer transport model. The small number of observed atmospheric concentrations in relation to the number of unknown flux components makes the inverse problem ill-conditioned, and assumptions on the fluxes are needed to constrain the solution. A common practice is to model the fluxes using latent Gaussian fields with a mean structure based on estimated fluxes from combinations of process modeling (natural fluxes) and statistical bookkeeping (anthropogenic emissions). Here, we reconstruct global CO2 flux fields by modeling fluxes using Gaussian Markov random fields (GMRFs), resulting in a flexible and computational beneficial model with a Matérn-like spatial covariance and a temporal covariance arriving from an autoregressive model in time domain. In contrast to previous inversions, the flux is defined on a spatially continuous domain, and the traditionally discrete flux representation is replaced by integrated fluxes at the resolution specified by the transport model. This formulation removes aggregation errors in the flux covariance, due to the traditional representation of area integrals by fluxes at discrete points, and provides a model closer resembling real-life space–time continuous fluxes.
  •  
7.
  • MacBean, Natasha, et al. (författare)
  • Consistent assimilation of multiple data streams in a carbon cycle data assimilation system
  • 2016
  • Ingår i: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X .- 1991-9603. ; 9:10, s. 3569-3588
  • Tidskriftsartikel (refereegranskat)abstract
    • Data assimilation methods provide a rigorous statistical framework for constraining parametric uncertainty in land surface models (LSMs), which in turn helps to improve their predictive capability and to identify areas in which the representation of physical processes is inadequate. The increase in the number of available datasets in recent years allows us to address different aspects of the model at a variety of spatial and temporal scales. However, combining data streams in a DA system is not a trivial task. In this study we highlight some of the challenges surrounding multiple data stream assimilation for the carbon cycle component of LSMs. We give particular consideration to the assumptions associated with the type of inversion algorithm that are typically used when optimising global LSMs-namely, Gaussian error distributions and linearity in the model dynamics. We explore the effect of biases and inconsistencies between the observations and the model (resulting in non-Gaussian error distributions), and we examine the difference between a simultaneous assimilation (in which all data streams are included in one optimisation) and a step-wise approach (in which each data stream is assimilated sequentially) in the presence of non-linear model dynamics. In addition, we perform a preliminary investigation into the impact of correlated errors between two data streams for two cases, both when the correlated observation errors are included in the prior observation error covariance matrix, and when the correlated errors are ignored. We demonstrate these challenges by assimilating synthetic observations into two simple models: the first a simplified version of the carbon cycle processes represented in many LSMs and the second a non-linear toy model. Finally, we provide some perspectives and advice to other land surface modellers wishing to use multiple data streams to constrain their model parameters.
  •  
8.
  • Pinty, B, et al. (författare)
  • An Operational Anthropogenic CO₂ Emissions Monitoring & Verification Support Capacity : Needs and High Level Requirements for in situ Measurements
  • 2019
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • This is the third report form the CO2 Monitoring Task Force on the multiple input streams of in-situ observations that are requirement for the Copernicus CO2 Monitoring and Verification Support capacity to: (i) calibrated and validate the space component, (ii) assimilate data in the models and integrate information in the core of the system, and (iii) evaluate the output generated by the system for its end users. The availability of sustained in situ networks is currently a significant factor of risk that needs to be mitigated to establish a European CO 2 support capacity which is fit-for-purpose. The current status of existing networks may be the source of large uncertainties in anthropogenicCO2 emission estimates as well as limited capability in meeting the requirements for country, large city and point source scale assessments. This conclusion results from a risk analysis formulated for four scenarios: 1) maintaining the status quo, 2) assuring sustained funding for the status quo, 3) enhancing network capabilities at European scale with sustained funding and 4) with a significantly improved in situ infrastructure in Europe and beyond. This report substantiates the multifaceted needs and requirements of the European CO2 support capacity with respect to in situ observations. The analysis concerns all core elements of the envisaged integrated system with a particular attention on the impact of such observations in achieving the proposed objectives. The specific needs for the validation of products delivered by the space component that is, the Copernicus Sentinels CO2 monitoring constellation, are addressed as another prerequisite for the success of the CO2 support capacity. This European asset will represent a significant contribution to the virtual constellation proposed by the Committee on Earth Observation Satellites (CEOS) and, accordingly, complementary requirements are elaborated in that international frame.The report highlights that although high measurement standards are present within existing networks such as ICOS, in the context of the needs for targeted in situ data for the realization of the operational system, these data are not fully fit-for-purpose. A fundamental prerequisite is to have a good geographical coverage over Europe for evaluating the data assimilation and modeling system over a large variety of environmental conditions such as, for instance, urban areas, agricultural regions, forested zones and industrial complexes. The in situ observations need to be extended under a coordinated European lead with sustained infrastructure and targeted additional and maintained long-term funding.It has been clearly understood from the onset that the international dimension of the European CO2 support capacity would be critical and that these aspects should be developed in parallel to, and in synergy with the definition and implementation of a European contributing system. It was also understood that this international dimension had both strategic, policy relevant and technical dimensions and the Commission and the relevant European institutional partners have started since several years to engage both bilaterally and multilaterally with the relevant stakeholders and counterparts to develop these relations. Specifically, CEOS will undertake, over the next few years,dedicated preparatory work in a coordinated international context, to provide cumulative added value to the specific programmatic activities of their member agencies. Concerted efforts have already begun in the context of the European Commission's Chairmanship of CEOS in 2018. It is recognized in the context of the European efforts, and increasingly by our international counterparts that a broad and holistic system approach is required to address the requirements which are represented by the climate policy, of which the satellite component, whilst important, cannot effectively be developed in isolation. This system indeed includes the satellite observing capability but in addition, the required modelling component and data integration elements, prior information, ancillary data and in situ observations delivered by essential networks.Acknowledging the need for an efficient coordination at international level for instance via the Global Atmosphere Watch programme of the World Meteorological Organisation is a key towards a successful implementation of appropriate actions to ensure the sustainability of essential networks, to enhance current network capabilities with new observations and to propose adequate governance schemes. Such actions to mitigate current network limitations are deemed critical to implementing the Copernicus CO 2 Monitoring & Verification Support capacity in its full strength.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy