SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "hsv:(NATURVETENSKAP) hsv:(Geovetenskap och miljövetenskap) hsv:(Meteorologi och atmosfärforskning) ;lar1:(lu)"

Search: hsv:(NATURVETENSKAP) hsv:(Geovetenskap och miljövetenskap) hsv:(Meteorologi och atmosfärforskning) > Lund University

  • Result 1-10 of 469
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Myers-Smith, Isla H., et al. (author)
  • Complexity revealed in the greening of the Arctic
  • 2020
  • In: Nature Climate Change. - : Springer Science and Business Media LLC. - 1758-678X .- 1758-6798. ; 10:2, s. 106-117
  • Journal article (peer-reviewed)abstract
    • As the Arctic warms, vegetation is responding, and satellite measures indicate widespread greening at high latitudes. This ‘greening of the Arctic’ is among the world’s most important large-scale ecological responses to global climate change. However, a consensus is emerging that the underlying causes and future dynamics of so-called Arctic greening and browning trends are more complex, variable and inherently scale-dependent than previously thought. Here we summarize the complexities of observing and interpreting high-latitude greening to identify priorities for future research. Incorporating satellite and proximal remote sensing with in-situ data, while accounting for uncertainties and scale issues, will advance the study of past, present and future Arctic vegetation change.
  •  
2.
  • Poyatos, R., et al. (author)
  • Global transpiration data from sap flow measurements: the SAPFLUXNET database
  • 2021
  • In: Earth System Science Data. - : Copernicus GmbH. - 1866-3508 .- 1866-3516. ; 13:6, s. 2607-2649
  • Journal article (peer-reviewed)abstract
    • Plant transpiration links physiological responses of vegetation to water supply and demand with hydrological, energy, and carbon budgets at the land-atmosphere interface. However, despite being the main land evaporative flux at the global scale, transpiration and its response to environmental drivers are currently not well constrained by observations. Here we introduce the first global compilation of whole-plant transpiration data from sap flow measurements (SAPFLUXNET, https://sapfluxnet.creaf.cat/, last access: 8 June 2021). We harmonized and quality-controlled individual datasets supplied by contributors worldwide in a semi-automatic data workflow implemented in the R programming language. Datasets include sub-daily time series of sap flow and hydrometeorological drivers for one or more growing seasons, as well as metadata on the stand characteristics, plant attributes, and technical details of the measurements. SAPFLUXNET contains 202 globally distributed datasets with sap flow time series for 2714 plants, mostly trees, of 174 species. SAPFLUXNET has a broad bioclimatic coverage, with woodland/shrubland and temperate forest biomes especially well represented (80 % of the datasets). The measurements cover a wide variety of stand structural characteristics and plant sizes. The datasets encompass the period between 1995 and 2018, with 50 % of the datasets being at least 3 years long. Accompanying radiation and vapour pressure deficit data are available for most of the datasets, while on-site soil water content is available for 56 % of the datasets. Many datasets contain data for species that make up 90 % or more of the total stand basal area, allowing the estimation of stand transpiration in diverse ecological settings. SAPFLUXNET adds to existing plant trait datasets, ecosystem flux networks, and remote sensing products to help increase our understanding of plant water use, plant responses to drought, and ecohydrological processes. SAPFLUXNET version 0.1.5 is freely available from the Zenodo repository (https://doi.org/10.5281/zenodo.3971689; Poyatos et al., 2020a). The "sapfluxnetr" R package - designed to access, visualize, and process SAPFLUXNET data - is available from CRAN.
  •  
3.
  • Roldin, Pontus, et al. (author)
  • The role of highly oxygenated organic molecules in the Boreal aerosol-cloud-climate system
  • 2019
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10, s. 1-15
  • Journal article (peer-reviewed)abstract
    • Over Boreal regions, monoterpenes emitted from the forest are the main precursors for secondary organic aerosol (SOA) formation and the primary driver of the growth of new aerosol particles to climatically important cloud condensation nuclei (CCN). Autoxidation of monoterpenes leads to rapid formation of Highly Oxygenated organic Molecules (HOM). We have developed the first model with near-explicit representation of atmospheric new particle formation (NPF) and HOM formation. The model can reproduce the observed NPF, HOM gas-phase composition and SOA formation over the Boreal forest. During the spring, HOM SOA formation increases the CCN concentration by ~10 % and causes a direct aerosol radiative forcing of −0.10 W/m2. In contrast, NPF reduces the number of CCN at updraft velocities < 0.2 m/s, and causes a direct aerosol radiative forcing of +0.15 W/m2. Hence, while HOM SOA contributes to climate cooling, NPF can result in climate warming over the Boreal forest.
  •  
4.
  • Podgrajsek, Eva, et al. (author)
  • Comparison of floating chamber and eddy covariance measurements of lake greenhouse gas fluxes
  • 2014
  • In: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 11, s. 4225-4233
  • Journal article (peer-reviewed)abstract
    • Fluxes of carbon dioxide (CO2) and methane (CH4) from lakes may have a large impact on the magnitude of the terrestrial carbon sink. Traditionally lake fluxes have been measured using the floating chamber (FC) technique; however, several recent studies use the eddy covariance (EC) method. We present simultaneous flux measurements using both methods at lake Tämnaren in Sweden during field campaigns in 2011 and 2012. Only very few similar studies exist. For CO2 flux, the two methods agree relatively well during some periods, but deviate substantially at other times. The large discrepancies might be caused by heterogeneity of partial pressure of CO2 (pCO2w) in the EC flux footprint. The methods agree better for CH4 fluxes. It is, however, clear that short-term discontinuous FC measurements are likely to miss important high flux events.
  •  
5.
  • He, Bin, et al. (author)
  • Worldwide impacts of atmospheric vapor pressure deficit on the interannual variability of terrestrial carbon sinks
  • 2022
  • In: National Science Review. - : Oxford University Press (OUP). - 2095-5138 .- 2053-714X. ; 9:4
  • Journal article (peer-reviewed)abstract
    • Interannual variability of the terrestrial ecosystem carbon sink is substantially regulated by various environmental variables and highly dominates the interannual variation of atmospheric carbon dioxide (CO2) concentrations. Thus, it is necessary to determine dominating factors affecting the interannual variability of the carbon sink to improve our capability of predicting future terrestrial carbon sinks. Using global datasets derived from machine-learning methods and process-based ecosystem models, this study reveals that the interannual variability of the atmospheric vapor pressure deficit (VPD) was significantly negatively correlated with net ecosystem production (NEP) and substantially impacted the interannual variability of the atmospheric CO2 growth rate (CGR). Further analyses found widespread constraints of VPD interannual variability on terrestrial gross primary production (GPP), causing VPD to impact NEP and CGR. Partial correlation analysis confirms the persistent and widespread impacts of VPD on terrestrial carbon sinks compared to other environmental variables. Current Earth system models underestimate the interannual variability in VPD and its impacts on GPP and NEP. Our results highlight the importance of VPD for terrestrial carbon sinks in assessing ecosystems' responses to future climate conditions.
  •  
6.
  • Saunois, M., et al. (author)
  • The global methane budget 2000–2012
  • 2016
  • In: Earth System Science Data. - : Copernicus GmbH. - 1866-3508 .- 1866-3516. ; 8:2, s. 697-751
  • Journal article (peer-reviewed)abstract
    • The global methane (CH4) budget is becoming an increasingly important component for managing realistic pathways to mitigate climate change. This relevance, due to a shorter atmospheric lifetime and a stronger warming potential than carbon dioxide, is challenged by the still unexplained changes of atmospheric CH4 over the past decade. Emissions and concentrations of CH4 are continuing to increase, making CH4 the second most important human-induced greenhouse gas after carbon dioxide. Two major difficulties in reducing uncertainties come from the large variety of diffusive CH4 sources that overlap geographically, and from the destruction of CH4 by the very short-lived hydroxyl radical (OH). To address these difficulties, we have established a consortium of multi-disciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate research on the methane cycle, and producing regular (∼ biennial) updates of the global methane budget. This consortium includes atmospheric physicists and chemists, biogeochemists of surface and marine emissions, and socio-economists who study anthropogenic emissions. Following Kirschke et al. (2013), we propose here the first version of a living review paper that integrates results of top-down studies (exploiting atmospheric observations within an atmospheric inverse-modelling framework) and bottom-up models, inventories and data-driven approaches (including process-based models for estimating land surface emissions and atmospheric chemistry, and inventories for anthropogenic emissions, data-driven extrapolations). For the 2003–2012 decade, global methane emissions are estimated by top-down inversions at 558 Tg CH4 yr−1, range 540–568. About 60 % of global emissions are anthropogenic (range 50–65 %). Since 2010, the bottom-up global emission inventories have been closer to methane emissions in the most carbon-intensive Representative Concentrations Pathway (RCP8.5) and higher than all other RCP scenarios. Bottom-up approaches suggest larger global emissions (736 Tg CH4 yr−1, range 596–884) mostly because of larger natural emissions from individual sources such as inland waters, natural wetlands and geological sources. Considering the atmospheric constraints on the top-down budget, it is likely that some of the individual emissions reported by the bottom-up approaches are overestimated, leading to too large global emissions. Latitudinal data from top-down emissions indicate a predominance of tropical emissions (∼ 64 % of the global budget, < 30° N) as compared to mid (∼ 32 %, 30–60° N) and high northern latitudes (∼ 4 %, 60–90° N). Top-down inversions consistently infer lower emissions in China (∼ 58 Tg CH4 yr−1, range 51–72, −14 %) and higher emissions in Africa (86 Tg CH4 yr−1, range 73–108, +19 %) than bottom-up values used as prior estimates. Overall, uncertainties for anthropogenic emissions appear smaller than those from natural sources, and the uncertainties on source categories appear larger for top-down inversions than for bottom-up inventories and models. The most important source of uncertainty on the methane budget is attributable to emissions from wetland and other inland waters. We show that the wetland extent could contribute 30–40 % on the estimated range for wetland emissions. Other priorities for improving the methane budget include the following: (i) the development of process-based models for inland-water emissions, (ii) the intensification of methane observations at local scale (flux measurements) to constrain bottom-up land surface models, and at regional scale (surface networks and satellites) to constrain top-down inversions, (iii) improvements in the estimation of atmospheric loss by OH, and (iv) improvements of the transport models integrated in top-down inversions. The data presented here can be downloaded from the Carbon Dioxide Information Analysis Center (http://doi.org/10.3334/CDIAC/GLOBAL_METHANE_BUDGET_2016_V1.1) and the Global Carbon Project.
  •  
7.
  • Strandberg, Gustav, et al. (author)
  • Regional climate model simulations for Europe at 6 and 0.2 k BP : sensitivity to changes in anthropogenic deforestation
  • 2014
  • In: Climate of the Past. - : Copernicus GmbH. - 1814-9324 .- 1814-9332. ; 10:2, s. 661-680
  • Journal article (peer-reviewed)abstract
    • This study aims to evaluate the direct effects of anthropogenic deforestation on simulated climate at two contrasting periods in the Holocene, similar to 6 and similar to 0.2 k BP in Europe. We apply We apply the Rossby Centre regional climate model RCA3, a regional climate model with 50 km spatial resolution, for both time periods, considering three alternative descriptions of the past vegetation: (i) potential natural vegetation (V) simulated by the dynamic vegetation model LPJ-GUESS, (ii) potential vegetation with anthropogenic land use (deforestation) from the HYDE3.1 (History Database of the Global Environment) scenario (V + H3.1), and (iii) potential vegetation with anthropogenic land use from the KK10 scenario (V + KK10). The climate model results show that the simulated effects of deforestation depend on both local/regional climate and vegetation characteristics. At similar to 6 k BP the extent of simulated deforestation in Europe is generally small, but there are areas where deforestation is large enough to produce significant differences in summer temperatures of 0.5-1 degrees C. At similar to 0.2 k BP, extensive deforestation, particularly according to the KK10 model, leads to significant temperature differences in large parts of Europe in both winter and summer. In winter, deforestation leads to lower temperatures because of the differences in albedo between forested and unforested areas, particularly in the snow-covered regions. In summer, deforestation leads to higher temperatures in central and eastern Europe because evapotranspiration from unforested areas is lower than from forests. Summer evaporation is already limited in the southernmost parts of Europe under potential vegetation conditions and, therefore, cannot become much lower. Accordingly, the albedo effect dominates in southern Europe also in summer, which implies that deforestation causes a decrease in temperatures. Differences in summer temperature due to deforestation range from -1 degrees C in south-western Europe to +1 degrees C in eastern Europe. The choice of anthropogenic land-cover scenario has a significant influence on the simulated climate, but uncertainties in palaeoclimate proxy data for the two time periods do not allow for a definitive discrimination among climate model results.
  •  
8.
  • Tang, R., et al. (author)
  • Increasing terrestrial ecosystem carbon release in response to autumn cooling and warming
  • 2022
  • In: Nature Climate Change. - : Springer Science and Business Media LLC. - 1758-678X .- 1758-6798. ; 12, s. 380-385
  • Journal article (peer-reviewed)abstract
    • Despite overall warming, many regions in the Northern Hemisphere have been cooling in autumn. This cooling resulted in an increasing release of net CO2 2004-2018 as primary production decreased more than respiration in cooling and respiration increased more than production in warming areas. Part of the Northern Hemisphere has experienced widespread autumn cooling during the most recent decades despite overall warming, but how this contrasting temperature change has influenced the ecosystem carbon exchange remains unclear. Here, we show that autumn cooling has occurred over about half of the area north of 25 degrees N since 2004, producing a weak cooling trend over the period 2004-2018. Multiple lines of evidence suggest an increasing net CO2 release in autumn during 2004-2018. In cooling areas, the increasing autumn CO2 release is due to the larger decrease of gross primary productivity (GPP) growth than total ecosystem respiration (TER) growth suppressed by cooling. In the warming areas, TER increased more than GPP because the warming and wetting conditions are more favourable for TER growth than GPP increase. Despite the opposite temperature trends, there has been a systematic increase in ecosystem carbon release across the Northern Hemisphere middle and high latitudes.
  •  
9.
  • Helbig, M., et al. (author)
  • Warming response of peatland CO2 sink is sensitive to seasonality in warming trends
  • 2022
  • In: Nature Climate Change. - : Springer Science and Business Media LLC. - 1758-6798 .- 1758-678X. ; 12:8, s. 743-749
  • Journal article (peer-reviewed)abstract
    • Peatlands have acted as net CO2 sinks over millennia, exerting a global climate cooling effect. Rapid warming at northern latitudes, where peatlands are abundant, can disturb their CO2 sink function. Here we show that sensitivity of peatland net CO2 exchange to warming changes in sign and magnitude across seasons, resulting in complex net CO2 sink responses. We use multiannual net CO2 exchange observations from 20 northern peatlands to show that warmer early summers are linked to increased net CO2 uptake, while warmer late summers lead to decreased net CO2 uptake. Thus, net CO2 sinks of peatlands in regions experiencing early summer warming, such as central Siberia, are more likely to persist under warmer climate conditions than are those in other regions. Our results will be useful to improve the design of future warming experiments and to better interpret large-scale trends in peatland net CO2 uptake over the coming few decades.
  •  
10.
  • Matthes, Heidrun, et al. (author)
  • Sensitivity of high-resolution Arctic regional climate model projections to different implementations of land surface processes
  • 2012
  • In: Climatic Change. - : Springer Science and Business Media LLC. - 0165-0009 .- 1573-1480. ; 111:2, s. 197-214
  • Journal article (peer-reviewed)abstract
    • This paper discusses the effects of vegetation cover and soil parameters on the climate change projections of a regional climate model over the Arctic domain. Different setups of the land surface model of the regional climate model HIRHAM were realized to analyze differences in the atmospheric circulation caused by (1) the incorporation of freezing/thawing of soil moisture, (2) the consideration of top organic soil horizons typical for the Arctic and (3) a vegetation shift due to a changing climate. The largest direct thermal effect in 2 m air temperature was found for the vegetation shift, which ranged between −1.5 K and 3 K. The inclusion of a freeze/thaw scheme for soil moisture shows equally large sensitivities in spring over cool areas with high soil moisture content. Although the sensitivity signal in 2 m air temperature for the experiments differs in amplitude, all experiments show changes in mean sea level pressure (mslp) and geopotential height (z) throughout the troposphere of similar magnitude (mslp: −2 hPa to 1.5 hPa, z: −15 gpm to 5 gpm). This points to the importance of dynamical feedbacks within the atmosphere-land system. Land and soil processes have a distinct remote influence on large scale atmospheric circulation patterns in addition to their direct, regional effects. The assessment of induced uncertainties due to the changed implementations of land surface processes discussed in this study demonstrates the need to take all those processes for future Arctic climate projections into account, and demonstrates a clear need to include similar implementations in regional and global climate models.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 469
Type of publication
journal article (406)
conference paper (27)
research review (15)
doctoral thesis (9)
book chapter (6)
reports (5)
show more...
other publication (1)
show less...
Type of content
peer-reviewed (446)
other academic/artistic (21)
pop. science, debate, etc. (2)
Author/Editor
Swietlicki, Erik (52)
Roldin, Pontus (35)
Kristensson, Adam (28)
Kulmala, Markku (19)
Lindroth, Anders (16)
Vermeulen, Alex (16)
show more...
Svenningsson, Birgit ... (16)
Petäjä, Tuukka (16)
Pagels, Joakim (15)
Martinsson, Bengt G. (15)
Löndahl, Jakob (14)
Ahlberg, Erik (14)
Swietlicki, E. (14)
Kulmala, M (13)
Eriksson, Axel (13)
Wiedensohler, Alfred (13)
Hansson, Hans-Christ ... (12)
Berndtsson, Ronny (11)
Friberg, Johan (11)
Rissler, Jenny (11)
Phillips, Vaughan (11)
Nilsson, Mats (10)
Peichl, Matthias (10)
Frank, Göran (10)
Sporre, Moa (10)
Smith, Benjamin (10)
Boy, Michael (10)
Ehn, Mikael (10)
Isaxon, Christina (9)
Hermann, Markus (9)
Zahn, Andreas (9)
Mölder, Meelis (9)
Chen, Deliang, 1961 (8)
Wiedensohler, A. (8)
Martinsson, Bengt (8)
Virtanen, Annele (8)
Kljun, Natascha (8)
Scholze, Marko (8)
Riipinen, Ilona (7)
Krejci, Radovan (7)
Laj, Paolo (7)
Ramonet, Michel (7)
Martinsson, Johan (7)
Bilde, Merete (7)
Glasius, Marianne (7)
Brenninkmeijer, Carl ... (7)
Klemedtsson, Leif, 1 ... (7)
Kerminen, Veli-Matti (7)
Laj, P. (7)
Harrison, R. M. (7)
show less...
University
Stockholm University (57)
University of Gothenburg (37)
Chalmers University of Technology (25)
Swedish University of Agricultural Sciences (23)
Umeå University (13)
show more...
Uppsala University (10)
IVL Swedish Environmental Research Institute (7)
Linnaeus University (6)
Linköping University (4)
Royal Institute of Technology (3)
RISE (2)
Karolinska Institutet (2)
Luleå University of Technology (1)
Örebro University (1)
VTI - The Swedish National Road and Transport Research Institute (1)
show less...
Language
English (463)
Swedish (5)
Finnish (1)
Research subject (UKÄ/SCB)
Natural sciences (469)
Engineering and Technology (22)
Medical and Health Sciences (17)
Agricultural Sciences (10)
Humanities (4)
Social Sciences (2)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view