SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "hsv:(NATURVETENSKAP) hsv:(Geovetenskap och miljövetenskap) hsv:(Meteorologi och atmosfärforskning) ;pers:(Grimmond C. S. B.)"

Sökning: hsv:(NATURVETENSKAP) hsv:(Geovetenskap och miljövetenskap) hsv:(Meteorologi och atmosfärforskning) > Grimmond C. S. B.

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Chrysoulakis, N, et al. (författare)
  • 7E.3: Urban Energy Balance from Space: the URBANFLUXES Project
  • 2018
  • Ingår i: 10th International Conference on Urban Climate/14th Symposium on the Urban Environment, New York, US, August 2018.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • The H2020-Space project URBANFLUXES investigated the potential of Copernicus Sentinels to retrieve the key components of the Urban Energy Budget (UEB). The Discrete Anisotropic Radiative Transfer (DART) model was used to estimate the net all-wave radiation fluxes. The storage heat flux was determined using the Element Surface Temperature Method (ESTM) after being modified to use satellite observations. Turbulent sensible and latent heat fluxes were estimated with the Aerodynamic Resistance Method (ARM). The fluxes were evaluated with in-situ flux measurements in London, Basel and Heraklion. URBANFLUXES prepared the ground for further innovative exploitation of Earth Observation data in climate variability studies scales and emerging applications (sustainable urban planning, mitigation technologies) to benefit climate change mitigation and adaptation. The wide range of data produced (e.g. land cover, vegetation phenology, surface morphology) have a much large possible applications. This project website (http://urbanfluxes.eu) provides more detailed information.
  •  
3.
  • Lindberg, Fredrik, 1974, et al. (författare)
  • 3D modelling of vegetation within a 2D model – evaluation and application
  • 2012
  • Ingår i: The Eight International Conference on Urban Climates.. ; :abstract nr 180
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • The SOlar and LongWave Environmental Irradiance Geometry (SOLWEIG) model simulates spatial variations of 3D radiation fluxes and mean radiant temperature (Tmrt) as well as shadow patterns in complex urban settings. Here, a new vegetation scheme is presented and evaluated. A new shadow casting algorithm for complex vegetation structures makes it possible to obtain continuous images of shadow patterns and sky view factors taking both buildings and vegetation into account. The model is evaluated using 5 days of integral radiation measurements at two sites within a square surrounded by low-rise buildings and vegetation in Göteborg, Sweden (57°N). There is good agreement between modelled and observed values of Tmrt. Furthermore, SOLWEIG is used to examine vegetation and building morphology characteristics through a north-south LiDAR transect across the megacity of London. It is shown that the contribution of vegetation to the shadowing and reduction of Tmrt at ground level is higher during summer than in autumn. The results from these simulations highlight that vegetation can be most effective at reducing heat stress within dense urban environments in summer. The daytime average Tmrt is found to be lowest in the densest urban environments due to shadowing; foremost from buildings but also from trees. It is clearly shown that this method could be used to quantify the influence of vegetation on Tmrt within the urban environment. The results presented in this paper highlight a number of possible climate sensitive planning practices for urban areas at the local scale.
  •  
4.
  • Lindberg, Fredrik, 1974, et al. (författare)
  • Urban Multi-scale Environmental Predictor (UMEP): An integrated tool for city-based climate services
  • 2018
  • Ingår i: Environmental Modelling and Software. - : Elsevier BV. - 1364-8152. ; 99, s. 70-87
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2017 The Authors UMEP (Urban Multi-scale Environmental Predictor), a city-based climate service tool, combines models and tools essential for climate simulations. Applications are presented to illustrate UMEP's potential in the identification of heat waves and cold waves; the impact of green infrastructure on runoff; the effects of buildings on human thermal stress; solar energy production; and the impact of human activities on heat emissions. UMEP has broad utility for applications related to outdoor thermal comfort, wind, urban energy consumption and climate change mitigation. It includes tools to enable users to input atmospheric and surface data from multiple sources, to characterise the urban environment, to prepare meteorological data for use in cities, to undertake simulations and consider scenarios, and to compare and visualise different combinations of climate indicators. An open-source tool, UMEP is designed to be easily updated as new data and tools are developed, and to be accessible to researchers, decision-makers and practitioners.
  •  
5.
  • Lindberg, Fredrik, 1974, et al. (författare)
  • Sunlit fractions on urban facets – Impact of spatial resolution and approach
  • 2015
  • Ingår i: Urban Climate. - 2212-0955. ; 12, s. 65-84
  • Tidskriftsartikel (refereegranskat)abstract
    • The extent of the surface area sunlit is critical for radiative energy exchanges and therefore for a wide range of applications that require urban land surface models (ULSM), ranging from human comfort to weather forecasting. Here a computationally demanding shadow casting algorithm is used to assess the capability of a simple single-layer urban canopy model, which assumes an infinitely long rotating canyon (ILC), to reproduce sunlit areas on roofs, walls and roads over central London. Results indicate that the sunlit road areas are well-represented but somewhat smaller using an ILC, while sunlit roofs areas are consistently larger, especially for dense urban areas. The largest deviations from real world sunlit areas are for roofs during mornings and evenings. Sunlit fractions on walls are overestimated using an ILC during mornings and evenings are found. The implications of these errors are dependent on the application targeted. For example, (independent of albedo) ULSMs used in numerical weather prediction applying ILC representation of the urban form will overestimate outgoing shortwave radiation from roofs due to the overestimation of sunlit fraction of the roofs. Complications of deriving height to width ratios from real world data are also discussed.
  •  
6.
  • Lordian, Thomas, et al. (författare)
  • Local-Scale Urban Meteorological Parameterization Scheme (LUMPS): longwave radiation parameterization and seasonality related developments
  • 2011
  • Ingår i: Journal of Applied Meteorology and Climatology. - 1558-8424 .- 1558-8432. ; 50, s. 185-202
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent developments to the Local-scale Urban Meteorological Parameterization Scheme (LUMPS), a simple model able to simulate the urban energy balance are presented. The major development is the coupling of LUMPS to the Net All-Wave Radiation Parameterization (NARP). Others include that the model now accounts for: changing availability of water at the surface; seasonal variations of active vegetation; and the anthropogenic heat flux; while maintaining the need for only commonly available meteorological observations and basic surface characteristics. The incoming component of the longwave radiation (L↓) in NARP is improved through a simple relation derived using cloud cover observations from a ceilometer collected in central London. The new L↓ formulation is evaluated with two independent multi-year datasets (Łódź, Poland and Baltimore, USA) and compared to alternatives that include: the original NARP and a simpler one using the U. S. National Climatic Data Center cloud observation database as input. The performance for the surface energy balance fluxes is assessed using a two year dataset (Łódź). Results have an overall RMSE
  •  
7.
  • Loridan, Thomas, et al. (författare)
  • High Resolution Simulation of the Variability of Surface Energy Balance Fluxes Across Central London with Urban Zones for Energy Partitioning
  • 2013
  • Ingår i: Boundary-Layer Meteorology. - : Springer Netherlands. - 0006-8314 .- 1573-1472. ; 147:3, s. 493-523
  • Tidskriftsartikel (refereegranskat)abstract
    • The parameterization of surface heat-flux variability in urban areas relies on adequate representation of surface characteristics. Given the horizontal resolutions (e.g. ≈ 0.1–1 km) currently used in numerical weather prediction (NWP) models, properties of the urban surface (e.g. vegetated/built surfaces, street-canyon geometries) often have large spatial variability. Here, a new approach based on Urban Zones to characterize Energy partitioning (UZE) is tested within a NWP model (Weather Research and Forecasting model; WRF v3.2.1) for Greater London. The urban land-surface scheme is the Noah/Single-Layer Urban Canopy Model (SLUCM). Detailed surface information (horizontal resolution 1 km) in central London shows that the UZE offers better characterization of surface properties and their variability compared to default WRF-SLUCM input parameters. In situ observations of the surface energy fluxes and near-surface meteorological variables are used to select the radiation and turbulence parameterization schemes and to evaluate the land-surface scheme and choice of surface parameters. For radiative fluxes, improved performance (e.g. > 25 W m −2 root-mean-square error reduction for the net radiation) is attained with UZE parameters compared to the WRF v3.2.1 default for all three methods from the simplest to the most detailed. The UZE-based spatial fluxes reproduce a priori expectations of greater energy storage and less evaporation in the dense city centre compared to the residential surroundings. Problems in Noah/SLUCM partitioning of energy between the daytime turbulent fluxes are identified with the overestimation of the turbulent sensible heat and underestimation of the turbulent latent heat fluxes.
  •  
8.
  • Onomura, Shiho, 1985, et al. (författare)
  • Meteorological forcing data for urban outdoor thermal comfort models from a coupled convective boundary layer and surface energy balance scheme
  • 2015
  • Ingår i: Urban Climate. - : Elsevier BV. - 2212-0955. ; 11, s. 1-23
  • Tidskriftsartikel (refereegranskat)abstract
    • Site-specific meteorological forcing appropriate for applications such as urban outdoor thermal comfort simulations can be obtained using a newly coupled scheme that combines a simple slab convective boundary layer (CBL) model and urban land surface model (ULSM) (here two ULSMs are considered). The former simulates daytime CBL height, air temperature and humidity, and the latter estimates urban surface energy and water balance fluxes accounting for changes in land surface cover. The coupled models are tested at a suburban site and two rural sites, one irrigated and one unirrigated grass, in Sacramento, U.S.A. All the variables modelled compare well to measurements (e.g. coefficient of determination = 0.97 and root mean square error = 1.5 °C for air temperature). The current version is applicable to daytime conditions and needs initial state conditions for the CBL model in the appropriate range to obtain the required performance. The coupled model allows routine observations from distant sites (e.g. rural, airport) to be used to predict air temperature and relative humidity in an urban area of interest. This simple model, which can be rapidly applied, could provide urban data for applications such as air quality forecasting and building energy modelling, in addition to outdoor thermal comfort.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy