SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "hsv:(NATURVETENSKAP) hsv:(Geovetenskap och miljövetenskap) hsv:(Meteorologi och atmosfärforskning) ;pers:(Mårtensson Monica)"

Sökning: hsv:(NATURVETENSKAP) hsv:(Geovetenskap och miljövetenskap) hsv:(Meteorologi och atmosfärforskning) > Mårtensson Monica

  • Resultat 1-10 av 21
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Merkulova, Lena, et al. (författare)
  • Effect of Wind Speed on Moderate Resolution Imaging Spectroradiometer (MODIS) Aerosol Optical Depth over the North Pacific
  • 2018
  • Ingår i: Atmosphere. - : MDPI AG. - 2073-4433 .- 2073-4433. ; 9:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The surface-wind speed influences on aerosol optical depth (AOD), derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua daily observations over the central North Pacific during the period 2003-2016, have been investigated in this study. The cloud coverage is relatively low over the present investigation area compared to other marine areas, which favors AOD derived from passive remote sensing from space. In this study, we have combined MODIS AOD with 2 m wind speed (U-2m) on a satellite-pixel basis, which has been interpolated from National Centers for Environmental Prediction (NCEP) reanalysis. In addition, daily averaged AOD derived from Aerosol Robotic Network (AERONET) measurements in the free-troposphere at the Mauna Loa Observatory (3397 m above sea level), Hawaii, was subtracted from the MODIS column AOD values. The latter was to reduce the contribution of aerosols above the planetary boundary layer. This study shows relatively strong power-law relationships between MODIS mean AOD and surface-wind speed for marine background conditions in summer, fall and winter of the current period. However, previous established relationships between AOD and surface-wind speed deviate substantially. Even so, for similar marine conditions the present relationship agrees reasonable well with a power-law relationship derived for north-east Atlantic conditions. The present MODIS retrievals of AOD in the marine atmosphere agree reasonably well with ground-based remote sensing of AOD.
  •  
2.
  • Nilsson, Ernst Douglas, et al. (författare)
  • Baltic Sea Spray Emissions : In Situ Eddy Covariance Fluxes vs. Simulated Tank Sea Spray
  • 2021
  • Ingår i: Atmosphere. - : MDPI AG. - 2073-4433 .- 2073-4433. ; 12:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the first ever evaluation of sea spray aerosol eddy covariance (EC) fluxes at near coastal conditions and with limited fetch, and the first over water with brackish water (on average 7 ppt). The measurements were made on the island of Garpen in the Baltic Sea (56°23′ N, 16°06′ E) in September 2005. We found that wind speed is a major factor that is driving an exponential increase in sea spray sea salt emissions, comparable to previous studies over waters with higher salinity. We were able to show that the inclusion of a thermodenuder in the EC system allowed for the parallel measurements of the dry unheated aerosol flux (representing both organic and sea salt sea spray emissions) and the heated (300 °C) non-volatile sea salt emissions. This study’s experimental approach also included measurements of the artificial sea spray formed in a tank in locally sampled water at the same location as the EC fluxes. We attempted to use the EC aerosol flux measurements to scale the tank measurements to aerosol emissions in order to derive a complete size distribution for the sea spray emission fluxes below the size range (0.3–2 µm dry diameter) of the optical particle counters (OPCs) in the EC system, covering in total 0.01 µm to 2 µm diameter. In the wind directions with long fetches (corresponding to conditions similar to open sea), we were able to distinguish between the aerosol emission fluxes of dry aerosol and heated non-volatile (sea salt only) in the smallest size bins of the OPC, and could therefore indirectly estimate the organic sea spray fraction. In agreement with several previous ambient and tank experiments deriving the size resolved chemical mass concentration of sea salt and water-insoluble organic sea spray, our EC fluxes showed that sea sprays were dominated by sea salt at sizes ≥1 µm diameter, and by organics at the smallest OPC sizes. Since we used direct measures of the sea spray emission fluxes, we confirmed previous suggestions that this size distribution of sea salt and organics is a signature of sea spray aerosols. We were able to show that two sea salt source parameterizations (Mårtensson et al. (2003) and Salter et al. (2015)) agreed fairly well with our observed heated EC aerosol emission fluxes, as long as their predicted emissions were modified for the actual salinity by shifting the particle diameters proportionally to the cubic rote of the salinity. If, in addition, we added organics to the parameterized sea spray following the mono-layer model by Ellison et al. (1999), the combined sea spray parameterizations for sea salt and organics fell reasonably close to the observed fluxes for diameters > 0.15 µm, while one of them overpredicted the sea spray emissions below this size. The organic mono-layer model by Ellison et al. appeared to be able to explain most of the differences we observed between the aerosol emission fluxes with and without the thermodenuder. 
  •  
3.
  • Vega, Carmen P., et al. (författare)
  • Composition, isotopic fingerprint and source attribution of nitrate deposition from rain and fog at a Sub-Arctic Mountain site in Central Sweden (Mt Åreskutan)
  • 2019
  • Ingår i: Tellus. Series B, Chemical and physical meteorology. - : Stockholm University Press. - 0280-6509 .- 1600-0889. ; 71
  • Tidskriftsartikel (refereegranskat)abstract
    • While dry and rain deposition of nitrate (NO3-) and ammonium (NH4+) are regularly assessed, fog deposition is often overlooked. This work assesses summer fog events contribution to nitrogen deposition and availability for forest ecosystems. Rain and fog samples were collected at Mt Areskutan, Sweden, during CAEsAR (Cloud and Aerosol Characterization Experiment), in 2014. NH4+ + NO3- represent (31 +/- 25) % of total rain ion amount, and (31 +/- 42) % in fog. Based on ion concentrations and the nitrate stable isotope signatures delta(N-15) and delta(O-18), it was possible to detect the plume generated by the Vastmanland forest fire; NOx emissions from oil rigs and Kola Peninsula; and the plume of Bardarbunga volcano, Iceland. Scavenging of ions by fog was more efficient than by rain. Rain NH4+ and NO3- deposition was (26 +/- 36) mu mol m(-2) d(-1) and (23 +/- 27) mu mol m(-2) d(-1), respectively. Fog NH4+ and NO3- contributed (77 +/- 80) % to total wet deposition of these species. Upscaling rain deposition fluxes to 1 year gave an inorganic nitrogen deposition of (18 +/- 16) mmol m(-2) a(-1) ((252 +/- 224) mg m(-2) a(-1) N equivalents), whereas fog deposition was estimated as (59 +/- 47) mmol m(-2) a(-1) ((826 +/- 658) mg m(-2) a(-1) N equivalents). Annual fog deposition was four times higher than previously reported for the area which only considered rain deposition. However, great uncertainty on the calculation of fog deposition need to be bear in mind. These findings suggest that fog should be considered in deposition estimates of inorganic nitrogen and major ions. If fog deposition is not accounted for, ion wet deposition may be greatly underestimated. Further sampling of wet and dry deposition is important for understanding the influence of nitrogen deposition on forest and vegetation development, as well as soil major ion loads.
  •  
4.
  • Rutgersson, Anna, 1971-, et al. (författare)
  • Using land-based stations for air–sea interaction studies
  • 2020
  • Ingår i: Tellus. Series A, Dynamic meteorology and oceanography. - : Informa UK Limited. - 0280-6495 .- 1600-0870. ; 72:1, s. 1-23
  • Tidskriftsartikel (refereegranskat)abstract
    • In situ measurements representing the marine atmosphere and air-sea interaction are taken at ships, buoys, stationary moorings and land-based towers, where each observation platform has structural restrictions. Air-sea fluxes are often small, and due to the limitations of the sensors, several corrections are applied. Land-based towers are convenient for long-term observations, but one critical aspect is the representativeness of marine conditions. Hence, a careful analysis of the sites and the data is necessary. Based on the concept of flux footprint, we suggest defining flux data from land-based marine micrometeorological sites in categories depending on the type of land influence:1. CAT1: Marine data representing open sea,2. CAT2: Disturbed wave field resulting in physical properties different from open sea conditions and heterogeneity of water properties in the footprint region, and3. CAT3: Mixed land-sea footprint, very heterogeneous conditions and possible active carbon production/consumption.Characterization of data would be beneficial for combined analyses using several sites in coastal and marginal seas and evaluation/comparison of properties and dynamics. Aerosol fluxes are a useful contribution to characterizing a marine micrometeorological field station; for most conditions, they change sign between land and sea sectors. Measured fluxes from the land-based marine station Ostergarnsholm are used as an example of a land-based marine site to evaluate the categories and to present an example of differences between open sea and coastal conditions. At the Ostergarnsholm site the surface drag is larger for CAT2 and CAT3 than for CAT1 when wind speed is below 10m/s. The heat and humidity fluxes show a distinctive distinguished seasonal cycle; latent heat flux is larger for CAT2 and CAT3 compared to CAT1. The flux of carbon dioxide is large from the coastal and land-sea sectors, showing a large seasonal cycle and significant variability (compared to the open sea sector). Aerosol fluxes are partly dominated by sea spray emissions comparable to those observed at other open sea conditions.
  •  
5.
  • Ahlm, Lars, 1976-, et al. (författare)
  • A comparison of dry and wet season aerosol number fluxes over the Amazon rain forest
  • 2010
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 10:6, s. 3063-3079
  • Tidskriftsartikel (refereegranskat)abstract
    • Vertical number fluxes of aerosol particles and vertical fluxes of CO2 were measured with the eddy covariance method at the top of a 53m high tower in the Amazon rain forest as part of the LBA (The Large Scale Biosphere Atmosphere Experiment in Amazonia) experiment. The observed aerosol number fluxes included particles with sizes down to 10 nm in diameter. The measurements were carried out during the wet and dry season in 2008. In this study focus is on the dry season aerosol fluxes, with significant influence from biomass burning, and these are compared with aerosol fluxes measured during the wet season. Net particle deposition fluxes dominated in daytime in both seasons and the deposition flux was considerably larger in the dry season due to the much higher dry season particle concentration. The particle transfer velocity increased linearly with increasing friction velocity in both seasons. The difference in transfer velocity between the two seasons was small, indicating that the seasonal change in aerosol number size distribution is not enough for causing any significant change in deposition velocity. In general, particle transfer velocities in this study are low compared to studies over boreal forests. The reasons are probably the high percentage of accumulation mode particles and the low percentage of nucleation mode particles in the Amazon boundary layer, both in the dry and wet season, and low wind speeds in the tropics compared to the midlatitudes. In the dry season, nocturnal particle fluxes behaved very similar to the nocturnal CO2 fluxes. Throughout the night, the measured particle flux at the top of the tower was close to zero, but early in the morning there was an upward particle flux peak that is not likely a result of entrainment or local pollution. It is possible that these morning upward particle fluxes are associated with emission of primary biogenic particles from the rain forest. Emitted particles may be stored within the canopy during stable conditions at nighttime, similarly to CO2, and being released from the canopy when conditions become more turbulent in the morning.
  •  
6.
  • Ahlm, Lars, et al. (författare)
  • Emission and dry deposition of accumulation mode particles in the Amazon Basin
  • 2010
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 10:21, s. 10237-10253
  • Tidskriftsartikel (refereegranskat)abstract
    • Size-resolved vertical aerosol number fluxes of particles in the diameter range 0.25–2.5 μm were measured with the eddy covariance method from a 53 m high tower over the Amazon rain forest, 60 km NNW of Manaus, Brazil. This study focuses on data measured during the relatively clean wet season, but a shorter measurement period from the more polluted dry season is used as a comparison. Size-resolved net particle fluxes of the five lowest size bins, representing 0.25–0.45 μm in diameter, pointed downward in more or less all wind sectors in the wet season. This is an indication that the source of primary biogenic aerosol particles may be small in this particle size range. In the diameter range 0.5–2.5 μm, vertical particle fluxes were highly dependent on wind direction. In wind sectors where anthropogenic influence was low, net emission fluxes dominated. However, in wind sectors associated with higher anthropogenic influence, net deposition fluxes dominated. The net emission fluxes were interpreted as primary biogenic aerosol emission, but deposition of anthropogenic particles seems to have masked this emission in wind sectors with higher anthropogenic influence. The emission fluxes were at maximum in the afternoon when the mixed layer is well developed, and these emissions were best correlated with horizontal wind speed by the equation log10F=0.47·U+2.26 where F is the emission number flux of 0.5–2.5 μm particles [m−2s−1] and U is the horizontal wind speed [ms−1] at the top of the tower.
  •  
7.
  • Marandino, Christa, et al. (författare)
  • From Monodisciplinary via Multidisciplinary to an Interdisciplinary Approach Investigating Air-Sea Interactions - a SOLAS Initiative
  • 2020
  • Ingår i: Coastal Management. - : Informa UK Limited. - 0892-0753 .- 1521-0421. ; 48:4, s. 238-256
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the physical and biogeochemical interactions and feedbacks between the ocean and atmosphere is a vital component of environmental and Earth system research. The ability to predict and respond to future environmental change relies on a detailed understanding of these processes. The Surface Ocean-Lower Atmosphere Study (SOLAS) is an international research platform that focuses on the study of ocean-atmosphere interactions, for which Future Earth is a sponsor. SOLAS instigated a collaborative initiative process to connect efforts in the natural and social sciences related to these processes, as a contribution to the emerging Future Earth Ocean Knowledge-Action Network (Ocean KAN). This is imperative because many of the recent changes in the Earth system are anthropogenic. An understanding of adaptation and counteracting measures requires an alliance of scientists from both domains to bridge the gap between science and policy. To this end, three SOLAS research areas were targeted for a case study to determine a more effective method of interdisciplinary research: valuing carbon and the ocean’s role; air-sea interactions, policy and stewardship; and, air-sea interactions and the shipping industry.
  •  
8.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 21

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy