SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "hsv:(TEKNIK OCH TEKNOLOGIER) hsv:(Annan teknik) ;pers:(Belitsky Victor 1955)"

Sökning: hsv:(TEKNIK OCH TEKNOLOGIER) hsv:(Annan teknik) > Belitsky Victor 1955

  • Resultat 1-10 av 29
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Marouf Rashid, Hawal, 1982, et al. (författare)
  • Metamaterial-Like Properties of the Distributed SIS Tunnel Junction
  • 2015
  • Ingår i: The 26th International Symposium on Space Terahertz Technology.
  • Konferensbidrag (refereegranskat)abstract
    • The propagation factor of the Niobium-based distributed Superconductor-Insulator-Superconductor (SIS) tunnel junction has been modelled for frequencies between 70-200 GHz. In the modelling, the distributed SIS junction was simulated as a microstrip distributed component. Furthermore, in our studies, the reactive part of the SIS tunnel junction quantum admittance was included in the model circuit diagram. It was shown that the SIS quantum reactance has significant effects on both the loss factor, Re (γ), and phase factor, Im (γ), where γ is the complex propagation constant.
  •  
2.
  • Nyström, Olle, 1979, et al. (författare)
  • Optics Design and Verificatgion for the APEX Swedish Heterodyne Facility Instrument (SHeFI)
  • 2009
  • Ingår i: Journal of Infrared, Millimeter, and Terahertz Waves. - : Springer Science and Business Media LLC. - 1866-6892 .- 1866-6906. ; 30:7, s. 746-761
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper, we present the design and verification of the optics of the Swedish Heterodyne Facility Instrument (SHeFI) receiver installed in the Atacama Pathfinder EXperiment (APEX) telescope during spring 2008. SHeFI is located in the Nasmyth instrumentation Cabin A (NCA). The receiver has been designed to have 6 frequency channels, of which four receiver channels have been built, and characterized: 211-275 GHz(Band 1), 275-370 GHz (Band 2), 385-500 GHz (Band 3), and 1250-1390 GHz (Band T2). Bands 1, 2, and T2 are installed at the telescope and are currently in operation. The optical design is driven by the requirement of frequency independent illumination of the secondary with -12 dB edge taper for each frequency channel and the limitation (beam clearance through the Nasmyth tube and the elevation encoder) imposed by the receiver position in the NCA. This paper describes the design approach, optimization, and verification of the optical system, coupling each individual receiving beam to the common optics of the telescope.
  •  
3.
  • Yadranjee Aghdam, Parisa, 1986, et al. (författare)
  • Dependence of the scatter of the electrical properties on local non-uniformities of the tunnel barrier in Nb/Al-AlOx/Nb junctions
  • 2016
  • Ingår i: Journal of Applied Physics. - : AIP Publishing. - 0021-8979 .- 1089-7550. ; 119:5, s. 0545021-0545026
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper, we study the effect of the tunnel barrier thickness non-uniformity in Nb/Al-AlOx/Nb tunnel junctions using the measurement results of the junctioncapacitance (C) and the normal resistance (Rn). The local thickness distribution of the AlOx tunnel barrier in Nb/Al-AlOx/Nb trilayer (RnA ∼ 30 Ω μm2) was studied by high resolution transmission electron microscopy. The specific resistance (RnA) values of the measured junctions range from 8.8 to 68 Ω μm2. We observed scatter in both the junction specific resistance and capacitance data, which is considerably higher than the measurement uncertainty. We also observed noticeable scatter in the RnC product, which does not stem from junction area estimation uncertainties. We discuss the possible reasons that contribute to this scatter. We suggest that the local thickness non-uniformity of the tunnel barrier significantly contributes to the scatter in the RnC product. We confirm this conclusion through an illustrative model based on the barrier imaging data, which results in the variation of the RnC data consistent with the measurements in this paper.
  •  
4.
  • Afanas'ev, Victor P., et al. (författare)
  • Study of NbN Ultra-thin Films for THz Hot-electron Bolometers
  • 2014
  • Ingår i: 25th International Sympsoium on Space Terahertz Technology, ISSTT 2014; Moscow; Russian Federation; 27 April 2014 through 30 April 2014. ; , s. 141-143
  • Konferensbidrag (refereegranskat)abstract
    • Hot-electron bolometer (HEB) mixers based on superconducting ultra-thin NbN films are largely used for THz spectroscopy for space and ground-based observations. Performance of the HEB mixers directly depends on the details of the structure and composition of thin film surface, as well as the nitrogen composition and its depth distribution. In this work, we present the study of the composition and the surface oxidation state of NbN films grown at two different temperatures and of 5 and 10 nm thickness.
  •  
5.
  • Belitsky, Victor, 1955, et al. (författare)
  • ALMA Band 2 Cold Cartridge Assembly Design
  • 2022
  • Ingår i: 32nd International Symposium of Space Terahertz Technology, ISSTT 2022.
  • Konferensbidrag (refereegranskat)abstract
    • As part of the ALMA development, we present the design of the ALMA Band 2 Cold Cartridge Assembly (CCA). The Band 2 is the last band that completes the suit of the 10 receiver channels of ALMA. The originally planned ALMA Band 2 receiver cartridge should cover the RF band of 67 - -90 GHz. The recent progress in technology, optics, OMT design and mm-wave amplifiers, however allowed to implement receiver that has an extended RF band up to 116 GHz. Furthermore, the Band 2 receiver pursues 2SB layout and provides 4-18 GHz IF band for two sidebands in a dual-polarization configuration. Here, we describe the design of the Band 2 CCA that includes optics, amplifier assembly, internal RF transport, mechanics and cryogenics. The downconverter part and performances are described elsewhere.
  •  
6.
  • Belitsky, Victor, 1955, et al. (författare)
  • ALMA Band 5 receiver cartridge: Design, performance, and commissioning
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 611
  • Tidskriftsartikel (refereegranskat)abstract
    • We describe the design, performance, and commissioning results for the new ALMA Band 5 receiver channel, 163-211 GHz, which is in the final stage of full deployment and expected to be available for observations in 2018. This manuscript provides the description of the new ALMA Band 5 receiver cartridge and serves as a reference for observers using the ALMA Band 5 receiver for observations. At the time of writing this paper, the ALMA Band 5 Production Consortium consisting of NOVA Instrumentation group, based in Groningen, NL, and GARD in Sweden have produced and delivered to ALMA Observatory over 60 receiver cartridges. All 60 cartridges fulfil the new more stringent specifications for Band 5 and demonstrate excellent noise temperatures, typically below 45 K single sideband (SSB) at 4 K detector physical temperature and below 35 K SSB at 3.5 K (typical for operation at the ALMA Frontend), providing the average sideband rejection better than 15 dB, and the integrated cross-polarization level better than -25 dB. The 70 warm cartridge assemblies, hosting Band 5 local oscillator and DC bias electronics, have been produced and delivered to ALMA by NRAO. The commissioning results confirm the excellent performance of the receivers.
  •  
7.
  • Belitsky, Victor, 1955, et al. (författare)
  • Prototype ALMA Band 5 Cartridge:Design and Performance
  • 2009
  • Ingår i: Proceedings of the 20TH INTERNATIONAL SYMPOSIUM ON SPACE TERAHERTZ TECHNOLOGY, Charlottesville, VA, USA, April 20-22, 2009, s. 2-5.
  • Konferensbidrag (refereegranskat)abstract
    • The Atacama Large Millimeter/submillimeterArray (ALMA), an international astronomy facility, is apartnership of East Asia, Europe and North America incooperation with the Republic of Chile and aims to build aninterferometer radio telescope consisting of more than 60antennas. The instrument is under construction at the Llano deChajnantor, about 50 km east of San Pedro de Atacama, Chile.This work presents a part of ALMA frontend, the development,design and performance of one of the frequency channels of theALMA receiver, the Band 5 prototype cartridge for 163 – 211GHz frequency band.
  •  
8.
  • Belitsky, Victor, 1955, et al. (författare)
  • Terahertz Instrumentation For Radio Astronomy
  • 2009
  • Ingår i: International Symposium on Terahertz Science and Technology between Japan and Sweden. ; , s. 28-29
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Radio Astronomy was always a frontrunner in the demand on terahertz technology. Millimetre and sub-millimetre wave receivers operate at ground-based observatories for more than 20 years with real Terahertz instruments making its way to ground-based [1] and space-based observatories, e.g., Herschel HIFI, during last years.In this talk, we will look at the key requirements to the radio astronomy and environmental science terahertz receivers using heterodyne technology. The most promising and established technologies for high-resolution spectroscopy instrumentation will be discussed. Using results of the Group for Advanced Receiver Development for Onsala Space Observatory 20 m telescope, for Atacama Pathfinder Experiment (APEX) telescope and ALMA Project Band 5, we will illustrate the trends and achievements in the terahertz instrumentation for radio astronomy.
  •  
9.
  • Belitsky, Victor, 1955, et al. (författare)
  • Thz-sensor
  • 2011
  • Annan publikation (övrigt vetenskapligt/konstnärligt)
  •  
10.
  • Billade, Bhushan, 1982, et al. (författare)
  • ALMA Band 5 (163-211 GHz) Sideband Separation Mixer
  • 2009
  • Ingår i: 20th international Symposium on Space and Terahertz technology, Charlottesville, VA, USA, April 20-22, 2009. ; , s. 19-23
  • Konferensbidrag (refereegranskat)abstract
    • We present the design of ALMA Band 5 sideband separation SIS mixer and experimental results for the double side band mixer and first measurement results 2SB mixer. In this mixer, the LO injection circuitry is integrated on the mixer substrate using a directional coupler, combining microstrip lines with slot-line branches in the ground plane. The isolated port of the LO coupler is terminated by wideband floating elliptical termination. The mixer employs two SIS junctions with junction area of 3 μm2 each, in the twin junction configuration, followed by a quarter wave transformer to match the RF probe. 2SB mixer uses two identical but mirrored chips, whereas each DSB mixer has the same end-piece configuration. The 2S mixer has modular design such that DSB mixers are measured independently and then integrated into 2SB simply by placing around the middle piece.Measurements of the DSB mixer show noise temperature ofaround 40K over the entire band. 2SB mixer is not fullycharacterized yet, however, preliminary measurement indicates SSB (un-corrected) noise temperature of 80K.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 29

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy