SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "hsv:(TEKNIK OCH TEKNOLOGIER) hsv:(Industriell bioteknik) ;mspu:(conferencepaper)"

Sökning: hsv:(TEKNIK OCH TEKNOLOGIER) hsv:(Industriell bioteknik) > Konferensbidrag

  • Resultat 1-10 av 953
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Anasontzis, George E, 1980 (författare)
  • Biomass modifying enzymes: From discovery to application
  • 2012
  • Ingår i: Oral presentation at the Chalmers Life Science AoA conference.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • It has now been realized that the road towards the bio-based economy is a one-way street, leaving gradually the oil-based technology and driving slowly towards a more sustainable society. The current non-biodegradable hydrocarbon fuels and plastics will be replaced by new products which will derive from natural and renewable resources. The synthesis of such biofuels and biochemicals is still challenged by the difficulties to cost efficiently degrade lignocellulosic material to fermentable sugars or to isolate the intact polymers. Biomass degrading and modifying enzymes play an integral role both in the separation of the polymers from the wood network, as well as in their subsequent modification, prior to further product development.Our group interests focus on all levels of applied enzyme research of biomass acting enzymes: Discovery, assay development, production and application. Relevant examples will be provided: What is our strategy for discovering novel microorganisms and enzymes from the tropical forests and grasslands of Vietnam? How do we design novel real-world assays for enzyme activity determination? Which are the bottlenecks in the enzymatic cellulose hydrolysis? How enzymes can be used to produce high added value compounds from biomass?
  •  
2.
  • Franzén, Carl Johan, 1966, et al. (författare)
  • Multifeed simultaneous saccharification and fermentation enables high gravity submerged fermentation of lignocellulose.
  • 2015
  • Ingår i: Recent Advances in Fermentation Technology (RAFT 11), Clearwater Beach, Florida, USA, November 8-11, 2015. Oral presentation..
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Today, second generation bioethanol production is becoming established in production plants across the world. In addition to its intrinsic value, the process can be viewed as a model process for biotechnological conversion of recalcitrant lignocellulosic raw materials to a range of chemicals and other products. So called High Gravity operation, i.e. fermentation at high solids loadings, represents continued development of the process towards higher product concentrations and productivities, and improved energy and water economy. We have employed a systematic, model-driven approach to the design of feeding schemes of solid substrate, active yeast adapted to the actual substrate, and enzymes to fed-batch simultaneous saccharification and co-fermentation (Multifeed SSCF) of steam-pretreated lignocellulosic materials in stirred tank reactors. With this approach, mixing problems were avoided even at water insoluble solids contents of 22%, leading to ethanol concentrations of 56 g/L within 72 hours of SSCF on wheat straw. Similar fermentation performance was verified in 10 m3 demonstration scale using wheat straw, and in lab scale on birch and spruce, using several yeast strains. The yeast was propagated in the liquid fraction obtained by press filtration of the pretreated slurry. Yet, even with such preadaptation and repeated addition of fresh cells, the viability in the SSCF dropped due to interactions between lignocellulose-derived inhibitors, the produced ethanol and the temperature. Decreasing the temperature from 35 to 30°C when the ethanol concentration reached 40-50 g/L resulted in rapid initial hydrolysis, maintained fermentation capacity, lower residual glucose and xylose and ethanol concentrations above 60 g/L.
  •  
3.
  •  
4.
  •  
5.
  • Shin, Jae Ho, 1987, et al. (författare)
  • Molecular docking and linear interaction energy studies give insight to α, β-reduction of enoate groups in enzymes
  • 2018
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Production of adipic acid from renewable sources has been gaining attention in an attempt to move from an oil-based economy to a biobased economy. Metabolic engineering allows microorganisms to produce useful chemicals using renewable resources as carbon sources. We target a theoretical metabolic pathway that relies on conversion of L-lysine to adipic acid. One of the enzymatic steps in this conversion pathway is an α, β-reduction of an unsaturated bond in an enoate moiety and no aerobic enzymes have been identified to specifically make this conversion on 6-amino-trans-2-hexenoic acid. We evaluated Escherichia coli NemA, and Saccharomyces pastorianus Oye1 (Old Yellow Enzyme 1) for their potenstial capability to carry out the desired α, β-reduction. Here, we build homology models for E. coli NemA and perform molecular docking studies of trans-2-hexenoic acid and trans-2-hexenal to the candidate enzyme models. Ligand-enzyme binding stability is assessed by molecular dynamics (MD) simulations. Additionally, linear energy calculations were used to investigate binding stability in solution environment. Here, we propose that NemA and Oye1, both belonging to the Old yellow enzyme family, have large enough catalytic pocket for accommodating enoate moieties but not enough stability to carry out the α, β-reduction. Protein engineering of both NemA and Oye1 would be necessary for these enzymes to perform the targeted reactions efficiently. The results shown in this study provides a useful insight to α, β-reduction reaction potentially crucial in bio-based production of adipic acid.
  •  
6.
  • Bettiga, Maurizio, 1978, et al. (författare)
  • Robust S. cerevisiae strain for next generation bio-processes: concepts and case-studies
  • 2013
  • Ingår i: Cell Factories and Biosustainability (Hilleroed, Denmark, May 5-8 2013).
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • The realization of an oil independent economy relies on the development of competitive processes for the production of fuels and chemicals from renewable resources. The extensive research on second-generation ethanol has paved the way to a new concept of bio-based industry, where lignocellulosic material is the primary source of sugars, to be converted to a number of fuels and chemicals. Harsh conditions during the bioconversion of lignocellulose-derived sugars to the desired products drastically hamper cell viability and therefore productivity. Microbial inhibition limits bioprocesses to an extent such that it can be said that understanding and harnessing microbial robustness is a prerequisite for the feasibility of new bioprocess and the production of renewable fuels and chemicals.Current research carried out by our group focuses on the yeast Saccharomyces cerevisiae and aims at investigating the molecular bases of microbial robustness. Our efforts include the identification of the molecular targets of different classes of fermentation inhibitors aiming at understanding the complex responses of the cells to these compounds. The final goal is to engineer more robust strains. The concept of robustness will be discussed and examples of key features for S. cerevisiae robustness as well as examples of successful engineering to increase robustness will be presented.
  •  
7.
  • Bettiga, Maurizio, 1978, et al. (författare)
  • Robust S. cerevisiae strain for next generation bio-processes: concepts and case-studies
  • 2013
  • Ingår i: 35th Symposium on Biotechnology for Fuels and Chemicals (Portland, OR. April 29-May 2, 2013).
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • The realization of an oil independent economy relies on the development of competitive processes for the production of fuels and chemicals from renewable resources. The extensive research on second-generation ethanol has paved the way to a new concept of bio-based industry, where lignocellulosic material is the primary source of sugars, to be converted to a number of fuels and chemicals. Sugars are released from cellulose and hemicellulose by pretreatment and hydrolysis steps. Harsh conditions result in the formation of a number of compounds, originating from sugars and lignin breakdown and acting as microorganism inhibitors. Weak organic acids, furaldehydes and phenolic compounds are sources of stress for the fermenting microorganism, as they influence cellular metabolism in a number of ways, including direct damage on cellular functions or by perturbations of the cellular energy and redox metabolism. In addition, the product of interest can act as a potent inhibitor. Regardless of the product, robust microorganisms are a prerequisite for the feasibility of lignocellulose-based bioprocesses.Current research carried out by our group focuses on the yeast Saccharomyces cerevisiae and aims at investigating the molecular bases of microbial robustness. Our efforts include the identification of the molecular targets of different classes of fermentation inhibitors aiming at understanding the complex responses of the cells to these compounds. The final goal is to engineer more robust strains. The concept of robustness will be discussed and examples of key features for S. cerevisiae robustness as well as examples of successful engineering to increase robustness will be presented.
  •  
8.
  •  
9.
  • Olsson, Lisbeth, 1963, et al. (författare)
  • Microbial robustness in bioprocesses
  • 2023
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Yeast is broadly exploited for industrial use, and strains are constantly improved to meet the requirements to produce the targeted product with high yield, productivity and titer. Successful strains have consistent performance also in presence of different perturbations, i.e. their performance is robust. The concept of microbial robustness will be discussed and contrasted to tolerance toward specific stresses. Furthermore, a method to quantitatively assess microbial robustness will be presented. This method allows a high throughput evaluation, in a perturbation space where different cellular function can form the basis for the evaluation. Another important tool box to examine intracellular status in face of pertubations are biosensors. Examples of applying these two methodologies towards microbial robustness will be discussed. We have used the tools to scale down bioprocesses and their perturbation, to follow adaptive laboratory evolution and to gain understanding of subpopulations.
  •  
10.
  • Sunner, Hampus, 1981, et al. (författare)
  • Fungal Ferulic Acid Esterases – Specificity and Phylogeny
  • 2009
  • Ingår i: Italic5 Science and Technology of Biomasses Proceedings Book, M Orlandi, C Crestine (Ed.). Italic5/COST conference, Sept 1-4 2009, Varenna, Italy.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Ferulic Acid Esterases (FAE) is a large heterogeneous group of enzymes with activity on esters of hydroxy- and metoxy- substituted cinnamic acid derivatives, such as ferulic acid. These ester bonds occur in the cell walls of plants and are especially common in grasses. As little systematic knowledge has been collected about this group of enzymes and only a few enzymes have been biochemically characterised to date, we have explored the phylogeny of FAEs using bioinformatic tools. We can conclude that the known Ferulic Acid Esterases belong to several evolutionary distant groups, two of which have dozens of highly related sequences, and a few groups with no members other than the known enzyme. The phylogeny also suggests certain similarities of substrate specificity within groups and proposes enzymes, whose biochemical characterisation would be especially informative for our understanding of the FAE families.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 953
Typ av publikation
Typ av innehåll
refereegranskat (499)
övrigt vetenskapligt/konstnärligt (447)
populärvet., debatt m.m. (7)
Författare/redaktör
Olsson, Lisbeth, 196 ... (160)
Oksman, Kristiina (104)
Albers, Eva, 1966 (52)
Mathew, Aji P. (45)
Franzén, Carl Johan, ... (41)
Taherzadeh, Mohammad ... (35)
visa fler...
Mapelli, Valeria, 19 ... (34)
Anasontzis, George E ... (32)
Bettiga, Maurizio, 1 ... (30)
Taherzadeh, Mohammad (30)
Hatti-Kaul, Rajni (24)
Berglund, Per (23)
Taherzadeh Esfahani, ... (19)
Morén, Tom (19)
Mattiasson, Bo (17)
Karimi, Keikhosro (15)
Jeihanipour, Azam (15)
Oksman, Kristiina, 1 ... (14)
Berglund, Kris (14)
Janssen, Mathias, 19 ... (14)
Koppram, Rakesh, 198 ... (14)
Larsson, Sylvia (13)
Peciulyte, Ausra, 19 ... (13)
Elustondo, Diego (12)
Svedendahl, Maria (12)
Westermark, Ulla (12)
Liu, Peng (11)
Aitomäki, Yvonne (11)
Ask, Magnus, 1983 (11)
Westman, Johan, 1983 (11)
Adeboye, Peter, 1982 (10)
Enoksson, Peter, 195 ... (10)
Rova, Ulrika (10)
Lui, Hoi-Shun, 1980 (10)
Antti, Lena (10)
Engelmark Cassimjee, ... (10)
Gatenholm, Paul, 195 ... (9)
Taherzadeh, Mohammad ... (9)
Holst, Olle (9)
Niklasson, Claes, 19 ... (9)
Hagander, Per (9)
Nierstrasz, Vincent, ... (9)
Veide Vilg, Jenny, 1 ... (9)
Olsson, Joakim, 1988 (9)
Shuley, Nicholas, 19 ... (9)
Larsbrink, Johan, 19 ... (9)
Lindberg, Henrik (9)
Lindberg, Lina, 1984 (9)
Geng, Shiyu (9)
Wang, Ruifei, 1985 (9)
visa färre...
Lärosäte
Chalmers tekniska högskola (360)
Luleå tekniska universitet (238)
Högskolan i Borås (108)
Lunds universitet (86)
Kungliga Tekniska Högskolan (83)
Sveriges Lantbruksuniversitet (33)
visa fler...
Linnéuniversitetet (20)
Linköpings universitet (16)
Uppsala universitet (14)
RISE (11)
Göteborgs universitet (10)
Mälardalens universitet (10)
Umeå universitet (9)
Högskolan i Gävle (7)
Mittuniversitetet (4)
Karlstads universitet (3)
Örebro universitet (2)
Malmö universitet (2)
Högskolan i Halmstad (1)
Jönköping University (1)
Karolinska Institutet (1)
visa färre...
Språk
Engelska (939)
Svenska (13)
Norska (1)
Forskningsämne (UKÄ/SCB)
Teknik (953)
Naturvetenskap (172)
Medicin och hälsovetenskap (27)
Lantbruksvetenskap (27)
Samhällsvetenskap (7)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy