SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "hsv:(TEKNIK OCH TEKNOLOGIER) hsv:(Maskinteknik) hsv:(Farkostteknik) "

Sökning: hsv:(TEKNIK OCH TEKNOLOGIER) hsv:(Maskinteknik) hsv:(Farkostteknik)

  • Resultat 1-10 av 5197
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Wadekar, Sandip, 1989 (författare)
  • Large-Eddy Simulation of Gasoline Fuel Spray Injection at Ultra-High Injection Pressures
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Gasoline direct injection is a state-of-the-art technique that reduces hydrocarbon and particulate emissions. However, further improvement is needed to meet current as well as future emission regulations. A prominent solution is to increase the fuel injection pressure which allows faster fuel droplet atomization, quick evaporation and improves fuel-air mixture formation under realistic engine conditions. In this work, the gasoline fuel injection process at ultra-high injection pressures ranging from 200 to 1500 bar was analyzed using numerical models. In particular, the Large-Eddy Simulation (LES) method, with the standard Smagorinsky turbulence model, was utilized using the Eulerian formulation  for the continuous phase. The discrete droplet phase was treated using a Lagrangian formulation together with spray sub-models. In the first part of study, spray was injected into an initially quiescent constant volume chamber using two different nozzle hole shape geometries: divergent and convergent. The numerical results were calibrated by reproducing experimentally observed liquid penetration length and efforts were made to understand the influence of ultra-high injection pressures on spray development. The calibrated models were then used to investigate the impact of ultra-high injection pressures on mean droplet sizes, droplet size distribution, spray-induced large-scale eddies and entrainment rate. The results showed that, at ultra-high injection pressures, the mean droplet sizes were significantly reduced and the droplets achieving very high  velocities. Integral length scales of spray-induced turbulence and air entrainment rate were better for the divergent-shaped injector, and considerably larger at higher injection pressures compared to lower ones. In the second part of the study, four consecutive full-cycle cold flow LES simulations were carried out to generate realistic turbulence inside the engine cylinder. The first three cycles were ignored, with the fourth cycle being used to model the injection of the fuel using the divergent-shaped injector only (which was found to be better in the previous part of this study) at different injection pressures. In addition to the continuous gas phase (Eulerian) and the dispersed liquid (Lagrangian), the liquid film feature (Finite-Area) was used to model the impingement of fuel spray on the engine walls and subsequent liquid film formation. The simulation results were used to evaluate spray-induced turbulence, fuel-air mixing efficiency and the amount of liquid mass deposited on the walls. The limitation of the high-pressure injection technique with respect to liquid film formation was optimized using a start of injection (SOI) sweep. Overall results showed that the mixing efficiency increased at high injection pressure and that SOI should occur between early injection and late injection to optimize the amount of mass being deposited on the engine walls.
  •  
3.
  • Okda, Sherif, et al. (författare)
  • Testing of the Aerodynamic Characteristics of an Inflatable Airfoil Section
  • 2020
  • Ingår i: Journal of Aerospace Engineering. - 1943-5525 .- 0893-1321. ; 33:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Inflatable structures are characterized by being light and easy to manufacture and deploy. Hence, they find many applications in aerospace and aeronautical engineering. In this paper, an inflatable segment with a The National Advisory Committee for Aeronautics (NACA) 0021 airfoil cross-section is designed, fabricated, and tested. The geometrical accuracy of the manufactured inflatable segment is measured using laser scanning. Measurements show that the average normalized error of the chord length and thickness are 2.97% and 0.554%, respectively. The aerodynamic behavior of the inflatable segment is then tested in a wind tunnel at different wind speeds and angles of attack. Lift forces are measured using a six-component balance, while the drag forces are calculated from the wake measurements. The lift and drag coefficients of the inflatable section are compared to those of a standard NACA 0021 airfoil. Finally, flow visualization is examined at different angles of attack using two methods: smoke and tufts. Both methods show that flow separation starts at 15° and full stall occurs at 25°. Results indicate that inflatables can find more applications in the design and construction of aerodynamic structures, such as wings.
  •  
4.
  • Bergdahl, Lars, 1943, et al. (författare)
  • Time simulation of the motion of a tension leg platform
  • 1988
  • Ingår i: BOSS'88 Proceedings of the international conference on behaviour of offshore structures. - 8251908558 ; 2, s. 875-890
  • Konferensbidrag (refereegranskat)abstract
    • The time-domain motion of a Tension Leg Platform is studied. The used method is based on a convolution technique in which the hydrodynamic reaction force from the frequency-domain solution is Fourier transformed to the time domain. Such a method allows one to consider arbitrary time varying external forces as for example non-linear reaction forces from tendons as well as transient loads.In the developed model time series of first-order wave forces and second-orde slowly varying wave forces are calculated for irregular plane and short-crested waves. Exciting forces due to wind and current are calculated using drag coefficients from model tests. The equations of motion in the time domain are solved for a tension-leg platform performing rigid body motion and results in time series of the motions as well as of the tension in the tendons.Numerical simulations have been carried out and the results are discussed. A comparison is made between calculations and model tests for a tension-leg platform in irregular long-crested waves.
  •  
5.
  • Hadadpour, Ahmad (författare)
  • Spray combustion with multiple-injection in modern engine conditions
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Combustion of fuel in diesel engines emits substances harmful to the environment such as soot. These emissions can be reduced by either in-cylinder treatments or after-treatments. One of the common in-cylinder treatments is multiple-injection, which divides a single fuel injection to multiple smaller injections. There are many open questions on the physical processes of the ignition, combustion and emissions of diesel spray flame with multiple injections. The current PhD project aims at studying these processes using large-eddy simulations (LES) and strives to answer some of the open questions. To develop a fast and robust LES tool for this study, a new method is formulated for spray combustion simulation. This method is developed based on the flamelet-generated manifold (FGM) method and the Eulerian stochastic fields (ESF) method. The new ESF/FGM method relaxes some of the substantial assumptions in conventional FGM, while it still keeps the computational costs at a reasonable level for engineering applications. Additionally in this work, a new reaction progress variable for FGM models is proposed by using local oxygen consumption, and the advantages and limitations of this progress variable are explored. Spray-A from Engine Combustion Network (ECN) which is designed to mimic modern engine conditions is chosen as the baseline case for simulations. In this case, liquid n-dodecane, which is a diesel surrogate, is injected into a high-pressure constant-volume vessel. The comparison of simulation results with experimental measurements shows that the ESF/FGM method with the new progress variable can predict the spray combustion characteristics such as ignition delay time, ignition location, lift-off length, pressure rise and thermochemical structure of the spray flame, accurately. After validation of simulation results against experimental measurements, the new ESF/FGM and other available turbulence-combustion simulation tools are applied to simulate multiple-injection spray combustion. Different multiple-injection strategies are investigated by systematically changing the injection timing. The effects of applying each strategy on the ignition, combustion, mixing and emissions are investigated. The results show that in split-injection and post-injection strategies the major physical reason for reduction of soot is better air entrainment and lower local equivalence ratio. It is shown that increasing the dwell time and retarding it toward the end of injection can enhance this effect. On the contrary, for the pre-injection strategies, shortening the ignition delay time of the main injection reduces its pre-mixing and increases its soot formation. In these strategies, the high-temperature region from the pre-injection combustion can increase soot oxidation of the main injection fuel, only if this region is not cooled down as a result of air entrainment during dwell time. Therefore, in such cases shortening the dwell time decreases net soot emissions.
  •  
6.
  • Pieringer, Astrid, 1979, et al. (författare)
  • Investigation of railway curve squeal using a combination of frequency- and time-domain models
  • 2016
  • Ingår i: Proceedings of the 12h International Workshop on Railway Noise (IWRN12), Terrigal, Australia, September 12-16. ; , s. 444 - 451
  • Konferensbidrag (refereegranskat)abstract
    • Railway curve squeal arises from self-excited vibrations during curving. In this paper, a frequency- and a timedomainapproach for curve squeal are compared. In particular, the capability of the frequency-domain model topredict the onset of squeal and the squeal frequencies is studied. In the frequency-domain model, linear stabilityis investigated through complex eigenvalue analysis. The time-domain model is based on a Green's functionsapproach and uses a convolution procedure to obtain the system response. To ensure comparability, the samesubmodels are implemented in both squeal models. The structural flexibility of a rotating wheel is modelled byadopting Eulerian coordinates. To account for the moving wheel‒rail contact load, the so-called moving elementmethod is used to model the track. The local friction characteristics in the contact zone is modelled inaccordance with Coulomb's law with a constant friction coefficient. The frictional instability arises due togeometrical coupling. In the time-domain model, Kalker's non-linear, non-steady state rolling contact modelincluding the algorithms NORM and TANG for normal and tangential contact, respectively, is solved in eachtime step. In the frequency-domain model, the normal wheel/rail contact is modelled by a linearization of theforce-displacement relation obtained with NORM around the quasi-static state and full-slip conditions areconsidered in tangential direction. Conditions similar to those of a curve on the Stockholm metro exposed tosevere curve squeal are studied with both squeal models. The influence of the wheel-rail friction coefficient andthe direction of the resulting creep force on the occurrence of squeal is investigated for vanishing train speed. Results from both models are similar in terms of the instability range in the parameter space and the predictedsqueal frequencies.
  •  
7.
  • Kyprianidis, Konstantinos, 1984, et al. (författare)
  • Multidisciplinary Analysis of a Geared Fan Intercooled Core Aero-Engine
  • 2014
  • Ingår i: Journal of Engineering for Gas Turbines and Power. - : ASME International. - 1528-8919 .- 0742-4795. ; 136:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The reduction of CO2 emissions is strongly linked with the improvement of engine specific fuel consumption, along with the reduction of engine nacelle drag and weight. One alternative design approach to improving specific fuel consumption is to consider a geared fan combined with an increased overall pressure ratio intercooled core performance cycle. The thermal benefits from intercooling have been well documented in the literature. Nevertheless, there is very little information available in the public domain with respect to design space exploration of such an engine concept when combined with a geared fan. The present work uses a multidisciplinary conceptual design tool to analyze the option of an intercooled core geared fan aero engine for long haul applications with a 2020 entry into service technology level assumption. With minimum mission fuel in mind, the results indicate as optimal values a pressure ratio split exponent of 0.38 and an intercooler mass flow ratio of 1.18 at hot-day top of climb conditions. At ISA midcruise conditions a specific thrust of 86 m/s, a jet velocity ratio of 0.83, an intercooler effectiveness of 56%, and an overall pressure ratio value of 76 are likely to be a good choice. A 70,000 lbf intercooled turbofan engine is large enough to make efficient use of an all-axial compression system, particularly within a geared fan configuration, but intercooling is perhaps more likely to be applied to even larger engines. The proposed optimal jet velocity ratio is actually higher than the value one would expect by using standard analytical expressions, primarily because this design variable affects core efficiency at midcruise due to a combination of several different subtle changes to the core cycle and core component efficiencies at this condition. The analytical expressions do not consider changes in core efficiency and the beneficial effect of intercooling on transfer efficiency, nor do they account for losses in the bypass duct and jet pipe, while a relatively detailed engine performance model, such as the one utilized in this study, does. Mission fuel results from a surrogate model are in good agreement with the results obtained from a rubberized-wing aircraft model for some of the design parameters. This indicates that it is possible to replace an aircraft model with specific fuel consumption and weight penalty exchange rates. Nevertheless, drag count exchange rates have to be utilized to properly assess changes in mission fuel for those design parameters that affect nacelle diameter.
  •  
8.
  • Thulin, Oskar, 1987, et al. (författare)
  • First and Second Law Analysis of Radical Intercooling Concepts
  • 2018
  • Ingår i: Journal of Engineering for Gas Turbines and Power. - : ASME International. - 1528-8919 .- 0742-4795. ; 140:8, s. 081201-081201-10
  • Tidskriftsartikel (refereegranskat)abstract
    • An exergy framework was developed taking into consideration a detailed analysis of the heat exchanger (HEX) (intercooler (IC)) component irreversibilities. Moreover, it was further extended to include an adequate formulation for closed systems, e.g., a secondary cycle (SC), moving with the aircraft. Afterward, the proposed framework was employed to study two radical intercooling concepts. The first proposed concept uses already available wetted surfaces, i.e., nacelle surfaces, to reject the core heat and contributes to an overall drag reduction. The second concept uses the rejected core heat to power a secondary organic Rankine cycle and produces useful power to the aircraft-engine system. Both radical concepts are integrated into a high bypass ratio (BPR) turbofan engine, with technology levels assumed to be available by year 2025. A reference intercooled cycle incorporating a HEX in the bypass (BP) duct is established for comparison. Results indicate that the radical intercooling concepts studied in this paper show similar performance levels to the reference cycle. This is mainly due to higher irreversibility rates created during the heat exchange process. A detailed assessment of the irreversibility contributors, including the considered HEXs and SC, is made. A striking strength of the present analysis is the assessment of the component-level irreversibility rate and its contribution to the overall aero-engine losses.
  •  
9.
  • Thulin, Oskar, 1987 (författare)
  • On the Analysis of Energy Efficient Aircraft Engines
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Aero engine performance analysis is highly multidimensional using various measures of component performance such as turbomachinery and mechanical efficiencies, and pressure loss coefficients. Using conventional performance analysis, relying on only the laws of thermodynamics, it is possible to understand how the performance parameters affect the component performance, but it is difficult to directly compare the magnitude of various loss sources. A comprehensive framework has been detailed to analyze aero engine loss sources in one common currency. As the common currency yields a measure of the lost work potential in every component, it is used to relate the component performance to the system performance. The theory includes a more detailed layout of all the terms that apply to a propulsion unit than presented before. The framework is here adopted to real gases to be used in state of the art performance codes. Additionally, the framework is further developed to enable detailed studies of two radical intercooling concepts that either rejects the core heat in the outer nacelle surfaces or uses the core heat for powering of a secondary cycle. The theory is also extended upon by presenting the installed rational efficiency, a true measure of the propulsion subsystem performance, including the installation effects of the propulsion subsystem as it adds weight and drag that needs to be compensated for in the performance assessment.
  •  
10.
  • INNOTRACK: Concluding technical report
  • 2010
  • Samlingsverk (redaktörskap) (refereegranskat)abstract
    • The track structure, rails, switches and crossings account for more than 50% of maintenance and renewal costs for the rail industry. To improve the competitiveness of rail transportation, the cost-efficiency of these areas needs to be addressed.This the background to INNOTRACK, an integrated research project funded by the European Commission’s 6th research framework pro- gramme. Running from September 2006 to December 2009, INN- OTRACK has developed a multitude of innovative solutions in the areas of track substructure, rails & welds, and switches & crossings. The solutions have been assessed from technical, logistics and life cycle cost point of views.This Concluding Technical Report of INNOTRACK includes an overview of the project. It further details implementable results, and clusters them into ”highlight” areas. In addition, the book acts as a ”key” to the vast amount of information from INNOTRACK: All sections refer to project reports where more information can be found.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 5197
Typ av publikation
konferensbidrag (2006)
tidskriftsartikel (1914)
rapport (418)
doktorsavhandling (265)
licentiatavhandling (255)
annan publikation (107)
visa fler...
bokkapitel (76)
patent (58)
proceedings (redaktörskap) (51)
bok (26)
forskningsöversikt (15)
samlingsverk (redaktörskap) (5)
recension (1)
visa färre...
Typ av innehåll
refereegranskat (3550)
övrigt vetenskapligt/konstnärligt (1590)
populärvet., debatt m.m. (57)
Författare/redaktör
Jacobson, Bengt J H, ... (168)
Ringsberg, Jonas, 19 ... (154)
Larsson, Lars, 1945 (135)
Svensson, Mats, 1960 (111)
Bruzelius, Fredrik, ... (88)
Yang, Jikuang, 1948 (86)
visa fler...
Stichel, Sebastian (79)
Krajnovic, Sinisa, 1 ... (79)
Drugge, Lars (73)
Nielsen, Jens, 1963 (72)
Bensow, Rickard, 197 ... (68)
Jonasson, Mats, 1969 (60)
Laine, Leo, 1972 (56)
Berg, Mats (53)
Ekberg, Anders, 1967 (52)
Drugge, Lars, 1967- (51)
Sebben, Simone, 1961 (50)
Jerrelind, Jenny, 19 ... (50)
Klomp, Matthijs, 197 ... (49)
Pipkorn, Bengt, 1963 (48)
Davidsson, Johan, 19 ... (47)
Rizzi, Arthur (47)
Grönstedt, Tomas, 19 ... (45)
Thomson, Robert, 196 ... (45)
Kharrazi, Sogol, 198 ... (45)
Stensson Trigell, An ... (44)
Iraeus, Johan, 1973 (44)
Casanueva, Carlos, 1 ... (43)
Mao, Wengang, 1980 (43)
Lidberg, Mathias R, ... (43)
Löfdahl, Lennart, 19 ... (42)
Kabo, Elena, 1972 (42)
Hjort, Mattias, 1972 ... (42)
Jakobsson, Lotta, 19 ... (41)
Stichel, Sebastian, ... (41)
Karlsson, Sten, 1951 (40)
Pålsson, Björn, 1981 (40)
Vernersson, Tore V, ... (38)
Fredriksson, Jonas, ... (38)
Linder, Astrid, 1959 ... (37)
Berg, Mats, 1956- (36)
Falcone, Paolo, 1977 (36)
Brolin, Karin, 1974 (36)
Dozza, Marco, 1978 (36)
Minelli, Guglielmo, ... (36)
Garme, Karl (35)
Asp, Kenneth (35)
Sjöberg, Jonas, 1964 (34)
Östh, Jonas, 1983 (34)
Enblom, Roger (34)
visa färre...
Lärosäte
Chalmers tekniska högskola (2908)
Kungliga Tekniska Högskolan (1424)
VTI - Statens väg- och transportforskningsinstitut (617)
Linköpings universitet (163)
RISE (150)
Lunds universitet (117)
visa fler...
Göteborgs universitet (58)
Luleå tekniska universitet (51)
Högskolan i Halmstad (38)
Umeå universitet (28)
Mälardalens universitet (28)
Uppsala universitet (25)
Stockholms universitet (19)
Linnéuniversitetet (15)
Försvarshögskolan (14)
Blekinge Tekniska Högskola (14)
Karolinska Institutet (12)
Jönköping University (9)
Högskolan i Skövde (9)
Sveriges Lantbruksuniversitet (8)
IVL Svenska Miljöinstitutet (6)
Högskolan Väst (5)
Örebro universitet (5)
Karlstads universitet (5)
Högskolan Dalarna (5)
Högskolan i Gävle (2)
Mittuniversitetet (2)
Högskolan i Borås (2)
Malmö universitet (1)
Konstfack (1)
Havs- och vattenmyndigheten (1)
visa färre...
Språk
Engelska (4967)
Svenska (190)
Tyska (17)
Kinesiska (11)
Spanska (5)
Norska (2)
visa fler...
Italienska (1)
Polska (1)
Japanska (1)
Persiska (1)
Koreanska (1)
visa färre...
Forskningsämne (UKÄ/SCB)
Teknik (5197)
Naturvetenskap (429)
Samhällsvetenskap (233)
Medicin och hälsovetenskap (135)
Humaniora (22)
Lantbruksvetenskap (10)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy