SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "hsv:(TEKNIK OCH TEKNOLOGIER) hsv:(Maskinteknik) hsv:(Rymd och flygteknik) "

Sökning: hsv:(TEKNIK OCH TEKNOLOGIER) hsv:(Maskinteknik) hsv:(Rymd och flygteknik)

  • Resultat 1-10 av 2164
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Wadekar, Sandip, 1989 (författare)
  • Large-Eddy Simulation of Gasoline Fuel Spray Injection at Ultra-High Injection Pressures
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Gasoline direct injection is a state-of-the-art technique that reduces hydrocarbon and particulate emissions. However, further improvement is needed to meet current as well as future emission regulations. A prominent solution is to increase the fuel injection pressure which allows faster fuel droplet atomization, quick evaporation and improves fuel-air mixture formation under realistic engine conditions. In this work, the gasoline fuel injection process at ultra-high injection pressures ranging from 200 to 1500 bar was analyzed using numerical models. In particular, the Large-Eddy Simulation (LES) method, with the standard Smagorinsky turbulence model, was utilized using the Eulerian formulation  for the continuous phase. The discrete droplet phase was treated using a Lagrangian formulation together with spray sub-models. In the first part of study, spray was injected into an initially quiescent constant volume chamber using two different nozzle hole shape geometries: divergent and convergent. The numerical results were calibrated by reproducing experimentally observed liquid penetration length and efforts were made to understand the influence of ultra-high injection pressures on spray development. The calibrated models were then used to investigate the impact of ultra-high injection pressures on mean droplet sizes, droplet size distribution, spray-induced large-scale eddies and entrainment rate. The results showed that, at ultra-high injection pressures, the mean droplet sizes were significantly reduced and the droplets achieving very high  velocities. Integral length scales of spray-induced turbulence and air entrainment rate were better for the divergent-shaped injector, and considerably larger at higher injection pressures compared to lower ones. In the second part of the study, four consecutive full-cycle cold flow LES simulations were carried out to generate realistic turbulence inside the engine cylinder. The first three cycles were ignored, with the fourth cycle being used to model the injection of the fuel using the divergent-shaped injector only (which was found to be better in the previous part of this study) at different injection pressures. In addition to the continuous gas phase (Eulerian) and the dispersed liquid (Lagrangian), the liquid film feature (Finite-Area) was used to model the impingement of fuel spray on the engine walls and subsequent liquid film formation. The simulation results were used to evaluate spray-induced turbulence, fuel-air mixing efficiency and the amount of liquid mass deposited on the walls. The limitation of the high-pressure injection technique with respect to liquid film formation was optimized using a start of injection (SOI) sweep. Overall results showed that the mixing efficiency increased at high injection pressure and that SOI should occur between early injection and late injection to optimize the amount of mass being deposited on the engine walls.
  •  
3.
  • Lejon, Marcus, 1986, et al. (författare)
  • Multidisciplinary Design of a Three Stage High Speed Booster
  • 2017
  • Ingår i: ASME Turbo Expo 2017: Turbine Technical Conference and Exposition. - : ASME Press. ; 2B-2017
  • Konferensbidrag (refereegranskat)abstract
    • The paper describes a multidisciplinary conceptual design of an axial compressor, targeting a three stage, high speed, high efficiency booster with a design pressure ratio of 2.8. The paper is outlined in a step wise manner starting from basic aircraft and engine thrust requirements, establishing the definition of the high speed booster interface points and its location in the engine. Thereafter, the aerodynamic 1D/2D design is carried out using the commercial throughflow tool SC90C. A number of design aspects are described, and the steps necessary to arrive at the final design are outlined. The SC90C based design is then carried over to a CFD based conceptual design tool AxCent, in which a first profiling is carried out based on a multiple circular arc blade definition. The design obtained at this point is referred to as the VINK compressor. The first stage of the compressor is then optimized using an in-house optimization tool, where the objective functions are evaluated from detailed CFD calculations. The design is improved in terms of efficiency and in terms of meeting the design criteria put on the stage in the earlier design phases. Finally, some aeromechanical design aspects of the first stage are considered. The geometry and inlet boundary conditions of the compressor are shared with the turbomachinery community on a public server. This is intended to be used as a test case for further optimization and analysis.
  •  
4.
  • Okda, Sherif, et al. (författare)
  • Testing of the Aerodynamic Characteristics of an Inflatable Airfoil Section
  • 2020
  • Ingår i: Journal of Aerospace Engineering. - 1943-5525 .- 0893-1321. ; 33:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Inflatable structures are characterized by being light and easy to manufacture and deploy. Hence, they find many applications in aerospace and aeronautical engineering. In this paper, an inflatable segment with a The National Advisory Committee for Aeronautics (NACA) 0021 airfoil cross-section is designed, fabricated, and tested. The geometrical accuracy of the manufactured inflatable segment is measured using laser scanning. Measurements show that the average normalized error of the chord length and thickness are 2.97% and 0.554%, respectively. The aerodynamic behavior of the inflatable segment is then tested in a wind tunnel at different wind speeds and angles of attack. Lift forces are measured using a six-component balance, while the drag forces are calculated from the wake measurements. The lift and drag coefficients of the inflatable section are compared to those of a standard NACA 0021 airfoil. Finally, flow visualization is examined at different angles of attack using two methods: smoke and tufts. Both methods show that flow separation starts at 15° and full stall occurs at 25°. Results indicate that inflatables can find more applications in the design and construction of aerodynamic structures, such as wings.
  •  
5.
  • Li, Xiaojian, 1991, et al. (författare)
  • Installation effects on engine design
  • 2020
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Increasing the engine bypass ratio is one way to improve propulsive efficiency. However, an increase in the bypass ratio (BPR) has usually been associated with an increase in the fan diameter. Consequently, there can be a notable increase in the impact of the engine installation on the overall aircraft performance. In order to achieve a better balance between those factors, it requires novel nacelle and engine design concepts. This report mainly reviews installation effects on engine design. Firstly, the installation effects assessment methods are introduced. Then, the installation effects on engine cycle design, intake design and exhaust design are sequentially reviewed.
  •  
6.
  • Kyprianidis, Konstantinos, 1984, et al. (författare)
  • Multidisciplinary Analysis of a Geared Fan Intercooled Core Aero-Engine
  • 2014
  • Ingår i: Journal of Engineering for Gas Turbines and Power. - : ASME International. - 1528-8919 .- 0742-4795. ; 136:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The reduction of CO2 emissions is strongly linked with the improvement of engine specific fuel consumption, along with the reduction of engine nacelle drag and weight. One alternative design approach to improving specific fuel consumption is to consider a geared fan combined with an increased overall pressure ratio intercooled core performance cycle. The thermal benefits from intercooling have been well documented in the literature. Nevertheless, there is very little information available in the public domain with respect to design space exploration of such an engine concept when combined with a geared fan. The present work uses a multidisciplinary conceptual design tool to analyze the option of an intercooled core geared fan aero engine for long haul applications with a 2020 entry into service technology level assumption. With minimum mission fuel in mind, the results indicate as optimal values a pressure ratio split exponent of 0.38 and an intercooler mass flow ratio of 1.18 at hot-day top of climb conditions. At ISA midcruise conditions a specific thrust of 86 m/s, a jet velocity ratio of 0.83, an intercooler effectiveness of 56%, and an overall pressure ratio value of 76 are likely to be a good choice. A 70,000 lbf intercooled turbofan engine is large enough to make efficient use of an all-axial compression system, particularly within a geared fan configuration, but intercooling is perhaps more likely to be applied to even larger engines. The proposed optimal jet velocity ratio is actually higher than the value one would expect by using standard analytical expressions, primarily because this design variable affects core efficiency at midcruise due to a combination of several different subtle changes to the core cycle and core component efficiencies at this condition. The analytical expressions do not consider changes in core efficiency and the beneficial effect of intercooling on transfer efficiency, nor do they account for losses in the bypass duct and jet pipe, while a relatively detailed engine performance model, such as the one utilized in this study, does. Mission fuel results from a surrogate model are in good agreement with the results obtained from a rubberized-wing aircraft model for some of the design parameters. This indicates that it is possible to replace an aircraft model with specific fuel consumption and weight penalty exchange rates. Nevertheless, drag count exchange rates have to be utilized to properly assess changes in mission fuel for those design parameters that affect nacelle diameter.
  •  
7.
  • Thulin, Oskar, 1987, et al. (författare)
  • First and Second Law Analysis of Radical Intercooling Concepts
  • 2018
  • Ingår i: Journal of Engineering for Gas Turbines and Power. - : ASME International. - 1528-8919 .- 0742-4795. ; 140:8, s. 081201-081201-10
  • Tidskriftsartikel (refereegranskat)abstract
    • An exergy framework was developed taking into consideration a detailed analysis of the heat exchanger (HEX) (intercooler (IC)) component irreversibilities. Moreover, it was further extended to include an adequate formulation for closed systems, e.g., a secondary cycle (SC), moving with the aircraft. Afterward, the proposed framework was employed to study two radical intercooling concepts. The first proposed concept uses already available wetted surfaces, i.e., nacelle surfaces, to reject the core heat and contributes to an overall drag reduction. The second concept uses the rejected core heat to power a secondary organic Rankine cycle and produces useful power to the aircraft-engine system. Both radical concepts are integrated into a high bypass ratio (BPR) turbofan engine, with technology levels assumed to be available by year 2025. A reference intercooled cycle incorporating a HEX in the bypass (BP) duct is established for comparison. Results indicate that the radical intercooling concepts studied in this paper show similar performance levels to the reference cycle. This is mainly due to higher irreversibility rates created during the heat exchange process. A detailed assessment of the irreversibility contributors, including the considered HEXs and SC, is made. A striking strength of the present analysis is the assessment of the component-level irreversibility rate and its contribution to the overall aero-engine losses.
  •  
8.
  • Thulin, Oskar, 1987 (författare)
  • On the Analysis of Energy Efficient Aircraft Engines
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Aero engine performance analysis is highly multidimensional using various measures of component performance such as turbomachinery and mechanical efficiencies, and pressure loss coefficients. Using conventional performance analysis, relying on only the laws of thermodynamics, it is possible to understand how the performance parameters affect the component performance, but it is difficult to directly compare the magnitude of various loss sources. A comprehensive framework has been detailed to analyze aero engine loss sources in one common currency. As the common currency yields a measure of the lost work potential in every component, it is used to relate the component performance to the system performance. The theory includes a more detailed layout of all the terms that apply to a propulsion unit than presented before. The framework is here adopted to real gases to be used in state of the art performance codes. Additionally, the framework is further developed to enable detailed studies of two radical intercooling concepts that either rejects the core heat in the outer nacelle surfaces or uses the core heat for powering of a secondary cycle. The theory is also extended upon by presenting the installed rational efficiency, a true measure of the propulsion subsystem performance, including the installation effects of the propulsion subsystem as it adds weight and drag that needs to be compensated for in the performance assessment.
  •  
9.
  • Edman, Jonas, 1973 (författare)
  • Modeling Diesel spray combustion using a Detailed Chemistry Approach
  • 2005
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The rapid development of computer hardware during the past decade has contributed substantially to advances in almost all branches of science. Computer modeling is being applied to increasingly small physical scales and increasingly large domains, facilitating the generation of advanced phenomenological models and models based on first principles. These developments have been especially valuable in fields where highly complex micro-scale events are observed or modeled, such as combustion studies, allowing (for instance) the incorporation of complex chemical combustion kinetics into engine spray combustion models. The crude models and global curve fits that were previously used to represent combustion phenomena have now been largely replaced by models based on "first principles". These modeling developments have coincided fortuitously with a shift in the focus of combustion concepts, from mixing-oriented combustion modes like Diesel and stratified charge Otto combustion to the kinetically controlled combustion modes usually referred to as Homogeneous Charge Compression Ignition (HCCI). The driving forces behind the development of the HCCI concept are environmental considerations, manifested in the form of emission legislation. Theoretically, HCCI combustion (characterized by fuel lean mixtures and low peak temperatures) has the potential to reduce soot and NOx emissions to current emission legislation levels even without after-treatment systems. In practical production engine applications, due to current drawbacks such as poor high load capability, the capacity to switch to conventional mode at high load operation is required. For the above reasons, computer modeling that is capable of describing both old and new combustion modes is required. In the work underlying this thesis, CFD modeling was applied to the passenger car Dl Diesel engine operated in both HCCI and conventional Diesel combustion modes. The aim was to couple chemical combustion kinetics and turbulent mixing in order to capture relevant phenomena related to ignition and emission formation for both modes. The resulting, coupled model is referred to as the Partially Stirred Reactor model (PaSR), and is the main component in the Detailed Chemistry Approach currently utilized in combustion modeling at Chalmers University of Technology (CTH). Other essential components of the Detailed Chemistry Approach are the Reference Species Technique (used to determine the relevant chemical timescales) and the Diesel fuel surrogate model (constructed to facilitate realistic treatment of the fuel in both liquid and gaseous states). The gaseous kinetic treatment of the Diesel fuel surrogate model, represented by a blend of aliphatic and aromatic components, consists of a chemical kinetic mechanism considering -75 chemical species participating in -330 elementary or global reactions describing n-heptane and toluene oxidation. Although most of the modeling was done in the CFD code KIVA-3V rel2, the development and validation of the chemical kinetic combustion mechanism was done using the SENKIN code and the CHEMKIN package. The chemical kinetic modeling has provided a kinetic mechanism for Diesel combustion that is capable of reproducing experimental ignition delay characteristics of both n-heptane and toluene oxidation in both low and high pressure regimes. In addition, it reproduces the negative temperature coefficient behavior that is an important feature of commercial Diesel fuels. It has also been able to reproduce cool flame phenomena, which play important roles in HCCI combustion. Results from the constant volume spray modeling have shown that the spray development, liquid and gas penetration and ignition characteristics observed in high pressure Diesel spray experiments are properly reproduced. Furthermore, major combustion variables such as ignition timing, heat release and pressure traces generated in engine simulations have satisfactorily reproduced experimental data acquired in tests using a single cylinder engine at Chalmers University of Technology.
  •  
10.
  • Li, Xiaojian, 1991, et al. (författare)
  • A new method for performance map prediction of automotive turbocharger compressors with both vaneless and vaned diffusers
  • 2021
  • Ingår i: Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. - : SAGE Publications. - 2041-2991 .- 0954-4070. ; 235:6, s. 1734-1747
  • Tidskriftsartikel (refereegranskat)abstract
    • A new approach to predict the performance maps of automotive turbocharger compressors is presented. Firstly, a polynomial equation is applied to fit the experimental data of flow coefficient ratios for the centrifugal compressors with both vaneless and vaned diffusers. Based on this equation, the choke and surge flow coefficients under different machine Mach numbers can be quickly predicted. Secondly, a physically based piecewise elliptic equation is used to define compressors’ characteristic curves in terms of efficiency ratio. By introducing the flow coefficient ratio into the efficiency correlation, the empirical coefficients in the piecewise elliptic equation are uniquely calibrated by the experimental data, forming a unified algebraic equation to match the efficiency maps of the compressors with both vaneless and vaned diffusers. Then, a new universal equation, which connects the work coefficient, the impeller outlet flow coefficient and the non-dimensional equivalent impeller outlet width, is derived by using classical aerothermodynamic method. The off-design pressure ratio is predicted based on the equivalent impeller outlet width with less knowledge of the compressor geometry and no empirical coefficients. Finally, three state-of-the-art turbocharger compressors (one with vaneless diffuser, two with vaned diffusers) are chosen to validate the proposed method, and the results show a satisfactory accuracy for the performance map prediction. This method can be used for the preliminary design of turbocharger compressors with both vaneless and vaned diffusers, or to assess the design feasibility and challenges of the given design specifications.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 2164
Typ av publikation
tidskriftsartikel (987)
konferensbidrag (867)
doktorsavhandling (106)
rapport (56)
licentiatavhandling (50)
bokkapitel (32)
visa fler...
annan publikation (30)
forskningsöversikt (14)
samlingsverk (redaktörskap) (9)
bok (9)
proceedings (redaktörskap) (3)
konstnärligt arbete (1)
recension (1)
visa färre...
Typ av innehåll
refereegranskat (1703)
övrigt vetenskapligt/konstnärligt (448)
populärvet., debatt m.m. (7)
Författare/redaktör
Martin-Torres, Javie ... (206)
Buehler, Stefan (121)
Zorzano, Maria Paz (85)
Grönstedt, Tomas, 19 ... (77)
Kyprianidis, Konstan ... (53)
Zorzano Mier, María- ... (48)
visa fler...
Bhardwaj, Anshuman (46)
Nilsson, Hans (44)
Milz, Mathias (33)
Xisto, Carlos, 1984 (32)
Chernoray, Valery, 1 ... (31)
Kuhn, Thomas, 1970- (31)
Belitsky, Victor, 19 ... (30)
Lundbladh, Anders, 1 ... (30)
Gutmark, Ephraim (27)
Yao, Huadong, 1982 (27)
Slapak, Rikard (26)
Desmaris, Vincent, 1 ... (26)
Rizzi, Arthur (26)
Zhao, Xin, 1986 (26)
Krus, Petter (25)
Eriksson, Patrick, 1 ... (25)
Eriksson, Leif, 1970 (24)
John, V.O. (24)
Larsson, Robin, 1981 ... (23)
Sam, Lydia (23)
Davidson, Lars, 1957 (22)
Jonsson, Isak, 1990 (22)
Andersson, Niklas, 1 ... (21)
Laufer, René (21)
Barabash, Stas (20)
Mihaescu, Mihai, 197 ... (20)
Isaksson, Ola, 1969 (19)
Meledin, Denis, 1974 (19)
Mendrok, Jana (19)
Krajnovic, Sinisa, 1 ... (19)
Eliasson, Salomon (19)
Tibert, Gunnar (18)
Ulander, Lars, 1962 (18)
Hanifi, Ardeshir, 19 ... (18)
Barabash, Victoria (18)
Pavolotskiy, Alexey, ... (17)
Krus, Petter, 1958- (17)
Behar, Etienne (17)
von Clarmann, T. (17)
Hanifi, Ardeshir, Do ... (16)
Singh, Shaktiman (16)
Murtagh, Donal, 1959 (16)
Kuhn, Thomas (16)
Söderberg, Rikard, 1 ... (16)
visa färre...
Lärosäte
Chalmers tekniska högskola (788)
Luleå tekniska universitet (729)
Kungliga Tekniska Högskolan (398)
Linköpings universitet (133)
Mälardalens universitet (80)
Uppsala universitet (72)
visa fler...
Lunds universitet (49)
Umeå universitet (40)
RISE (26)
Försvarshögskolan (20)
Göteborgs universitet (18)
Blekinge Tekniska Högskola (12)
VTI - Statens väg- och transportforskningsinstitut (11)
Stockholms universitet (9)
Linnéuniversitetet (9)
Högskolan Väst (6)
Jönköping University (6)
Sveriges Lantbruksuniversitet (6)
Örebro universitet (3)
Högskolan i Halmstad (1)
Malmö universitet (1)
Mittuniversitetet (1)
Högskolan i Skövde (1)
Karlstads universitet (1)
IVL Svenska Miljöinstitutet (1)
visa färre...
Språk
Engelska (2142)
Svenska (15)
Tyska (3)
Spanska (3)
Vietnamesiska (1)
Forskningsämne (UKÄ/SCB)
Teknik (2164)
Naturvetenskap (343)
Lantbruksvetenskap (30)
Humaniora (21)
Samhällsvetenskap (12)
Medicin och hälsovetenskap (3)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy