SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "hsv:(TEKNIK OCH TEKNOLOGIER) hsv:(Maskinteknik) hsv:(Rymd och flygteknik) ;pers:(Barabash Victoria)"

Sökning: hsv:(TEKNIK OCH TEKNOLOGIER) hsv:(Maskinteknik) hsv:(Rymd och flygteknik) > Barabash Victoria

  • Resultat 1-10 av 21
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Barabash, Victoria, et al. (författare)
  • Electron density profiles in the quiet lower ionosphere based on the results of modeling and experimental data
  • 2012
  • Ingår i: Annales Geophysicae. - : European Geosciences Union (EGU). - 0992-7689 .- 1432-0576. ; 30:9, s. 1345-1360
  • Tidskriftsartikel (refereegranskat)abstract
    • The theoretical PGI (Polar Geophysical Institute) model for the quiet lower ionosphere has been applied for computing the ionization rate and electron density profiles in the summer and winter D-region at solar zenith angles less than 80° and larger than 99° under steady state conditions. In order to minimize possible errors in estimation of ionization rates provided by solar electromagnetic radiation and to obtain the most exact values of electron density, each wavelength range of the solar spectrum has been divided into several intervals and the relations between the solar radiation intensity at these wavelengths and the solar activity index F10.7 have been incorporated into the model. Influence of minor neutral species (NO, H2O, O, O3) concentrations on the electron number density at different altitudes of the sunlit quiet D-region has been examined. The results demonstrate that at altitudes above 70 km, the modeled electron density is most sensitive to variations of nitric oxide concentration. Changes of water vapor concentration in the whole altitude range of the mesosphere influence the electron density only in the narrow height interval 73–85 km. The effect of the change of atomic oxygen and ozone concentration is the least significant and takes place only below 70 km. Model responses to changes of the solar zenith angle, solar activity (low–high) and season (summer–winter) have been considered. Modeled electron density profiles have been evaluated by comparison with experimental profiles available from the rocket measurements for the same conditions. It is demonstrated that the theoretical model for the quiet lower ionosphere is quite effective in describing variations in ionization rate, electron number density and effective recombination coefficient as functions of solar zenith angle, solar activity and season. The model may be used for solving inverse tasks, in particular, for estimations of nitric oxide concentration in the mesosphere.
  •  
4.
  • Barabash, Victoria (författare)
  • ESRAD MST radar analysis of the waves
  • 1998
  • Ingår i: Proceedings of the 4th European Symposium on Stratospheric Ozone, Air Pollution Research Report 66, European Commision. ; , s. 70-73
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)
  •  
5.
  • Barabash, Victoria, et al. (författare)
  • Influence of water vapour on the height distribution of positive ions, effective recombination coefficient and ionisation balance in the quiet lower ionosphere
  • 2014
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 32, s. 207-222
  • Tidskriftsartikel (refereegranskat)abstract
    • Mesospheric water vapour concentration effects on the ion composition and electron density in the lower ionosphere under quiet geophysical conditions were examined. Water vapour is an important compound in the mesosphere and the lower thermosphere that affects ion composition due to hydrogen radical production and consequently modifies the electron number density. Recent lower-ionosphere investigations have primarily concentrated on the geomagnetic disturbance periods. Meanwhile, studies on the electron density under quiet conditions are quite rare. The goal of this study is to contribute to a better understanding of the ionospheric parameter responses to water vapour variability in the quiet lower ionosphere. By applying a numerical D region ion chemistry model, we evaluated efficiencies for the channels forming hydrated cluster ions from the NO+ and O2+ primary ions (i.e. NO+.H2O and O2+.H2O, respectively), and the channel forming H+(H2O)nproton hydrates from water clusters at different altitudes using profiles with low and high water vapour concentrations. Profiles for positive ions, effective recombination coefficients and electrons were modelled for three particular cases using electron density measurements obtained during rocket campaigns. It was found that the water vapour concentration variations in the mesosphere affect the position of both the Cl2+ proton hydrate layer upper border, comprising the NO+(H2O)nand O2+(H2O)nhydrated cluster ions, and the Cl1+ hydrate cluster layer lower border, comprising the H+(H2O)npure proton hydrates, as well as the numerical cluster densities. The water variations caused large changes in the effective recombination coefficient and electron density between altitudes of 75 and 87 km. However, the effective recombination coefficient, αeff, and electron number density did not respond even to large water vapour concentration variations occurring at other altitudes in the mesosphere. We determined the water vapour concentration upper limit at altitudes between 75 and 87 km, beyond which the water vapour concentration ceases to influence the numerical densities of Cl2+ and Cl1+, the effective recombination coefficient and the electron number density in the summer ionosphere. This water vapour concentration limit corresponds to values found in the H2O-1 profile that was observed in the summer mesosphere by the Upper Atmosphere Research Satellite (UARS). The electron density modelled using the H2O-1 profile agreed well with the electron density measured in the summer ionosphere when the measured profiles did not have sharp gradients. For sharp gradients in electron and positive ion number densities, a water profile that can reproduce the characteristic behaviour of the ionospheric parameters should have an inhomogeneous height distribution of water vapour.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  • Barabash, Victoria, et al. (författare)
  • Polar mesosphere summer echoes during the July 2000 solar proton event
  • 2004
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 22:3, s. 759-771
  • Tidskriftsartikel (refereegranskat)abstract
    • The influence of the solar proton event (SPE) 14-16 July 2000 on Polar Mesosphere Summer Echoes (PMSE) is examined. PMSE were observed by the Esrange VHF MST Radar (ESRAD) at 67°53'N, 21°06'E. The 30MHz Imaging Riometer for Ionospheric Studies IRIS in Kilpisjärvi (69°30'N, 20°47'E) registered cosmic radio noise absorption caused by ionisation changes in response to the energetic particle precipitation. An energy deposition/ion-chemical model was used to estimate the density of free electrons and ions in the upper atmosphere. Particle collision frequencies were calculated from the MSISE-90 model. Electric fields were calculated using conductivities from the model and measured magnetic disturbances. The electric field reached a maximum of 91mV/m during the most intensive period of the geomagnetic storm accompanying the SPE. The temperature increase due to Joule and particle heating was calculated, taking into account radiative cooling. The temperature increase at PMSE heights was found to be very small. The observed PMSE were rather intensive and extended over the 80-90km height interval. PMSE almost disappeared above 86km at the time of greatest Joule heating on 15 July 2000. Neither ionisation changes, nor Joule/particle heating can explain the PMSE reduction. Transport effects due to the strong electric field are a more likely explanation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 21

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy