SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "hsv:(TEKNIK OCH TEKNOLOGIER) hsv:(Maskinteknik) hsv:(Rymd och flygteknik) ;pers:(Clarmann T. von)"

Sökning: hsv:(TEKNIK OCH TEKNOLOGIER) hsv:(Maskinteknik) hsv:(Rymd och flygteknik) > Clarmann T. von

  • Resultat 1-10 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chauhan, Swarup, et al. (författare)
  • MIPAS reduced spectral resolution UTLS-1 mode measurements of temperature, O3, HNO3, N2O, H2O and relative humidity over ice: retrievals and comparison to MLS
  • 2009
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; :2, s. 337-353
  • Tidskriftsartikel (refereegranskat)abstract
    • During several periods since 2005 the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on Envisat has performed observations dedicated to the region of the upper troposphere/lower stratosphere (UTLS). For the duration of November/December 2005 global distributions of temperature and several trace gases from MIPAS UTLS-1 mode measurements have been retrieved using the IMK/IAA (Institut für Meteorologie und Klimaforschung/Instituto de Astrofísica de Andalucía) scientific processor. In the UTLS region a vertical resolution of 3 km for temperaure, 3 to 4 km for H2O, 2.5 to 3 km for O3, 3.5 km for HNO3 and 3.5 to 2.5 km for N2O has been achieved. The retrieved temperature, H2O, O3, HNO3, N2O, and relative humidity over ice are intercompared with the Microwave Limb Sounder (MLS/Aura) v2.2 data in the pressure range 316 to 0.68 hPa, 316 to 0.68 hPa, 215 to 0.68 hPa, 215 to 3.16 hPa, 100 to 1 hPa and 316 to 10 hPa, respectively. In general, MIPAS and MLS temperatures are biased within ±4 K over the whole pressure and latitude range. Systematic, latitude-independent differences of −2 to −4 K (MIPAS-MLS) at 121 hPa are explained by previously observed biases in the MLS v2.2 temperature retrievals. Temperature differences of −4 K up to 12 K above 10.0 hPa are present both in MIPAS and MLS with respect to ECMWF (European Centre for Medium-Range Weather Forecasts) and are likely due to deficiencies of the ECMWF analysis data. MIPAS and MLS stratospheric volume mixing ratios (vmr) of H2O are biased within ±1 ppmv, with indication of oscillations between 146 and 26 hPa in the MLS dataset. Tropical upper tropospheric values of relative humidity over ice measured by the two instruments differ by ±20% in the pressure range ~146 to 68 hPa. These differences are mainly caused by the MLS temperature biases. Ozone mixing ratios agree within 0.5 ppmv (10 to 20%) between 68 and 14 hPa. At pressures smaller than 10 hPa, MIPAS O3 vmr are higher than MLS by an average of 0.5 ppmv (10%). General agreement between MIPAS and MLS HNO3 is within the range of −1.0 (−10%) to 1.0 ppbv (20%). MIPAS HNO3 is 1.0 ppbv (10%) higher compared to MLS between 46 hPa and 10 hPa over the Northern Hemisphere. Over the tropics at 31.6 hPa MLS shows a low bias of more than 1 ppbv (>50%). In general, MIPAS and MLS N2O vmr agree within 20 to 40 ppbv (20 to 40%). Differences in the range between 100 to 21 hPa are attributed to a known 20% positive bias in MIPAS N2O data.
  •  
2.
  • Funke, Bernd, et al. (författare)
  • New non-LTE retrieval method for atmospheric parameters from MIPAS/ENVISAT emission spectra at 5.3 μm
  • 2002
  • Ingår i: Proceedings of SPIE, the International Society for Optical Engineering. - : SPIE. - 0277-786X .- 1996-756X. ; 4539, s. 396-405
  • Tidskriftsartikel (refereegranskat)abstract
    • Atmospheric emissions at 5.3 μm will be measured by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), a high-resolution limb sounder on board the European polar platform ENVISAT, scheduled to be launched in 2001. Measured spectra at 5.3 μm contain information on important atmospheric quantities such as NO volume mixing ratio, thermospheric temperature, and chemical NO production rates. However, the scientific analysis of this spectral region has to deal with complex non-local thermodynamic equilibrium (non-LTE) effects. A conventional non-LTE retrieval approach using ab initio vibrational temperatures cannot be applied due to rotational and spin-orbit non-LTE of NO in the thermosphere, and the dependence of NO state populations on the NO abundance itself caused by chemical excitations. An innovative non-LTE retrieval method enabling the treatment of vibrational, rotational, and spin non-LTE as well as a dependence of the non-LTE state distribution on the retrieval target quantities has thus been developed for the MIPAS data analysis. The ability of the developed non-LTE inversion tool to retrieve NO abundance profiles, thermospheric temperature profiles, and NO mean production rates by NO2 photolysis in the stratosphere and N+O2 combination in the thermosphere is demonstrated by means of a feasibility study.
  •  
3.
  • Glatthor, N., et al. (författare)
  • Global peroxyacetyl nitrate (PAN) retrieval in the upper troposphere from limb emission spectra of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS)
  • 2007
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 7:11, s. 2775-2787
  • Tidskriftsartikel (refereegranskat)abstract
    • We use limb emission spectra of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) onboard the ENVIronmental SATellite (ENVISAT) to derive the first global distribution of peroxyacetyl nitrate (PAN) in the upper troposphere. PAN is generated in tropospheric air masses polluted by fuel combustion or biomass burning and acts as a reservoir and carrier of NOx in the cold free troposphere. PAN exhibits continuum-like broadband structures in the mid-infrared region and was retrieved in a contiguous analysis window covering the wavenumber region 775–800 cm−1. The interfering species CCl4, HCFC-22, H2O, ClONO2, CH3CCl3 and C2H2 were fitted along with PAN, whereas pre-fitted profiles were used to model the contribution of other contaminants like ozone. Sensitivity tests consisting in retrieval without consideration of PAN demonstrated the existence of PAN signatures in MIPAS spectra obtained in polluted air masses. The analysed dataset consists of 10 days between 4 October and 1 December 2003. This period covers the end of the biomass burning season in South America and South and East Africa, in which generally large amounts of pollutants are produced and distributed over wide areas of the southern hemispheric free troposphere. Indeed, elevated PAN amounts of 200–700 pptv were measured in a large plume extending from Brasil over the Southern Atlantic, Central and South Africa, the South Indian Ocean as far as Australia at altitudes between 8 and 16 km. Enhanced PAN values were also found in a much more restricted area between northern subtropical Africa and India. The most significant northern midlatitude PAN signal was detected in an area at 8 km altitude extending from China into the Chinese Sea. The average mid and high latitude PAN amounts found at 8 km were around 125 pptv in the northern, but only between 50 and 75 pptv in the southern hemisphere. The PAN distribution found in the southern hemispheric tropics and subtropics is highly correlated with the jointly fitted acetylene (C2H2), which is another pollutant produced by biomass burning, and agrees reasonably well with the CO plume detected during end of September 2003 at the 275 hPa level (~10 km) by the Measurement of Pollution in the Troposphere (MOPITT) instrument on the Terra satellite. Similar southern hemispheric PAN amounts were also observed by previous airborne measurements performed in September/October 1992 and 1996 above the South Atlantic and the South Pacific, respectively.
  •  
4.
  • Glatthor, N., et al. (författare)
  • Retrieval of stratospheric ozone profiles from MIPAS/ENVISAT limb emission spectra : a sensitivity study
  • 2006
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 6:10, s. 2767-2781
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the dependence of ozone volume mixing ratio profiles, retrieved from limb emission infrared spectra of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), on different retrieval setups such as the treatment of the background continuum, cloud filtering, spectral regions used for analysis and a series of further more technical parameter choices. The purpose of this investigation is to better understand the error sources of the ozone retrieval, to optimize the current retrieval setup and to document changes in the data versions. It was shown that the cloud clearing technique used so far (cloud index 1.8) does not reliably exclude all cloud-contaminated spectra from analysis. Through analysis of spectra calculated for cloudy atmospheres we found that the cloud index should be increased to a value of 3.0 or higher. Further, it was found that assignment of a common background continuum to adjacent microwindows within 5 cm−1 is advantageous, because it sufficiently represents the continuum emission by aerosols, clouds and gases as reported in the literature, and is computationally more efficient. For ozone retrieval we use ozone lines from MIPAS band A (685–970 cm−1) and band AB (1020–1170 cm−1) as well. Therefore we checked ozone retrievals with lines from bands A or AB only for a systematic difference. Such a difference was indeed found and could, to a major part, be attributed to the spectroscopic data used in these two bands, and to a minor part to neglection of modelling of non-local thermodynamic (non-LTE) emissions. Another potential explanation, a bias in the radiance calibration of level-1B spectra of bands A and AB, could largely be ruled out by correlation analysis and inspection of broadband spectra. Further upgrades in the ozone retrieval consist of application of an all-zero a-priori profile and a weaker regularization. Finally, the ozone distribution obtained with the new retrieval setup (data versions V3o_O3_7) was compared to the data version used before (V2_O3_2). Differences are smaller than $\pm$0.4 ppmv in the altitude region 15–50 km. Further, differences to ozone measured by the HALogen Occultation Experiment (HALOE) on the Upper Atmospheric Research Satellite (UARS) are partly reduced with the new MIPAS data version.
  •  
5.
  • Kasai, Y., et al. (författare)
  • Validation of stratospheric and mesospheric ozone observed by SMILES from International Space Station
  • 2013
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 6:9, s. 2311-2338
  • Tidskriftsartikel (refereegranskat)abstract
    • We observed ozone (O3) in the vertical region between 250 and 0.0005 hPa (~ 12–96 km) using the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) on the Japanese Experiment Module (JEM) of the International Space Station (ISS) between 12 October 2009 and 21 April 2010. The new 4 K superconducting heterodyne receiver technology of SMILES allowed us to obtain a one order of magnitude better signal-to-noise ratio for the O3 line observation compared to past spaceborne microwave instruments. The non-sun-synchronous orbit of the ISS allowed us to observe O3 at various local times. We assessed the quality of the vertical profiles of O3 in the 100–0.001 hPa (~ 16–90 km) region for the SMILES NICT Level 2 product version 2.1.5. The evaluation is based on four components: error analysis; internal comparisons of observations targeting three different instrumental setups for the same O3 625.371 GHz transition; internal comparisons of two different retrieval algorithms; and external comparisons for various local times with ozonesonde, satellite and balloon observations (ENVISAT/MIPAS, SCISAT/ACE-FTS, Odin/OSIRIS, Odin/SMR, Aura/MLS, TELIS). SMILES O3 data have an estimated absolute accuracy of better than 0.3 ppmv (3%) with a vertical resolution of 3–4 km over the 60 to 8 hPa range. The random error for a single measurement is better than the estimated systematic error, being less than 1, 2, and 7%, in the 40–1, 80–0.1, and 100–0.004 hPa pressure regions, respectively. SMILES O3 abundance was 10–20% lower than all other satellite measurements at 8–0.1 hPa due to an error arising from uncertainties of the tangent point information and the gain calibration for the intensity of the spectrum. SMILES O3 from observation frequency Band-B had better accuracy than that from Band-A. A two month period is required to accumulate measurements covering 24 h in local time of O3 profile. However such a dataset can also contain variation due to dynamical, seasonal, and latitudinal effects
  •  
6.
  • Kiefer, M., et al. (författare)
  • Characterization of MIPAS elevation pointing
  • 2007
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 7:6, s. 1615-1628
  • Tidskriftsartikel (refereegranskat)abstract
    • Sufficient knowledge of the pointing is essential for analyses of limb emission measurements. The scientific retrieval processor for MIPAS on ENVISAT operated at IMK allows the retrieval of pointing information in terms of tangent altitudes along with temperature. The retrieved tangent altitudes are independent of systematic offsets in the engineering Line-Of-Sight (LOS) information delivered with the ESA Level 1b product. The difference of pointing retrieved from the reprocessed high resolution MIPAS spectra and the engineering pointing information was examined with respect to spatial/temporal behaviour. Among others the following characteristics of MIPAS pointing could be identified: Generally the engineering tangent altitudes are too high by 0–1.8 km with conspicuous variations in this range over time. Prior to December of 2003 there was a drift of about 50–100 m/h, which was due to a slow change in the satellite attitude. A correction of this attitude is done twice a day, which leads to discontinuities in the order of 1–1.5 km in the tangent altitudes. Occasionally discontinuities up to 2.5 km are found, as already reported from MIPAS and SCIAMACHY observations. After an update of the orbit position software in December 2003 values of drift and jumps are much reduced. There is a systematic difference in the mispointing between the poles which amounts to 1.5–2 km, i.e. there is a conspicuous orbit-periodic feature. The analysis of the correlation between the instrument's viewing angle azimuth and differential mispointing supports the hypotheses that a major part of this latter phenomenon can be attributed to an error in the roll angle of the satellite/instrument system of approximately 42 mdeg. One conclusion is that ESA level 2 data should be compared to other data exclusively on tangent pressure levels. Complementary to IMK data, ESA operational LOS calibration results were used to characterize MIPAS pointing. For this purpose MIPAS is used as a radiometer while the passage of infrared bright stars through the instrument's field of view is recorded. Deviation from expected time of passage gives information about mispointing. Results are: a pronounced seasonal variation of the LOS is seen before a correction of on-board software took place in December of 2003. Further a pitch bias of 26 mdeg with respect to the platform attitude information is found, which corresponds to 1.45 km tangent altitude offset towards low altitudes.
  •  
7.
  • Kiefer, M., et al. (författare)
  • Impact of temperature field inhomogeneities on the retrieval of atmospheric species from MIPAS IR limb emission spectra
  • 2010
  • Ingår i: Atmospheric Measurement Techniques Discussions. - : Copernicus GmbH. - 1867-8610. ; 3:2, s. 1707-1742
  • Tidskriftsartikel (refereegranskat)abstract
    • We examine volume mixing ratios (vmr) retrieved from limb emission spectra recorded with the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS). In level 2 (L2) data products of three different retrieval processors, which perform one dimensional (1-D) retrievals, we find significant differences between species' profiles from ascending and descending orbit parts. The relative differences vary systematically with time of the year, latitude, and altitude. In the lower stratosphere their monthly means can reach maxima of 20% for CFC-11, CFC-12, HNO3, H2O, 10% for CH4 and N2O. Relative differences between monthly means of 1-D retrieval results and of the true atmospheric state can be expected to reach half of these percentage values, while relative differences in single vmr profiles might well exceed those numbers. Often there are no physical or chemical reasons for these differences, so they are an indicator for a problem in the data processing. The differences are generally largest at locations where the meridional temperature gradient of the atmosphere is strong. On the contrary, when performing the retrieval with a tomographic two dimensional (2-D) retrieval, L2 products generally do not show these differences. This implies that inhomogeneities in the temperature field, and possibly in the species' fields, which are accounted for in the 2-D algorithm and not in standard 1-D processors, may cause significant deviations in the results. Inclusion of an externally given adequate temperature gradient in the forward model of a 1-D processor helps to reduce the observed differences. However, only the full tomographic approach is suitable to resolve the horizontal inhomogeneities. Implications for the use of the 1-D data, e.g. for validation, are discussed. The dependence of the ascending/descending differences on the observation strategy suggests that this problem is to be expected to affect in general 1-D retrievals of infrared limb sounders, if the line of sight of the instrument has a significant component in the direction of the horizontal temperature variation.
  •  
8.
  • López-Puertas, M., et al. (författare)
  • Non-local thermodynamic equilibrium limb radiances for the mipas instrument on Envisat-1
  • 1998
  • Ingår i: Journal of Quantitative Spectroscopy and Radiative Transfer. - 0022-4073 .- 1879-1352. ; 59:3-5, s. 377-403
  • Tidskriftsartikel (refereegranskat)abstract
    • An evaluation of the effects that the assumption of local thermodynamic equilibrium (LTE) has on the retrieval of pressure, temperature and the five primary target gases (O3, H2O, CH4, N2O, and HNO3) from spectra to be taken by Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on the Envisat-1 platform has been conducted. For doing so, non-LTE and LTE limb radiances in the spectral range of 680–2275 cm−1 (4.15–14.6 μm) with a resolution of 0.05 cm−1 at tangent heights from 10 to 70 km have been computed. These calculations included the most updated non-LTE populations of a large number of vibrational levels of the CO2, O3, H2O, CH4, N2O and HNO3 molecules which cause the most prominent atmospheric infrared emissions. A discussion of the most important non-LTE effects on the limb radiances as well as on the retrievals of pressure-temperature and volume mixing ratios of O3, H2O, CH4, N2O, and HNO3 is presented, together with the most important non-LTE issues that could be studied with the future coming of MIPAS data.
  •  
9.
  • López-Puertas, M., et al. (författare)
  • Non-LTE studies for the analysis of MIPAS/ENVISAT data
  • 2002
  • Ingår i: Proceedings of SPIE, the International Society for Optical Engineering. - : SPIE. - 0277-786X .- 1996-756X. ; 4539, s. 381-395
  • Tidskriftsartikel (refereegranskat)abstract
    • The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) is a high-resolution limb sounder on board the European polar platform ENVISAT, scheduled for launch late in 2001. Three main characteristics converge in MIPAS which make it a very useful instrument for non-LTE studies: its wide spectral coverage (4.15-14.6 μm or 680-2275 cm-1); high spectral resolution (0.03 cm-1), and high sensitivity; all of this in addition to its global spatial coverage. In this paper we present an overview of the non-LTE studies that have been carried out in preparation for the analysis of MIPAS data, including the evaluation of non-LTE effects in the operational processing, focussed in the stratosphere, and the retrieval of species that normally emit under non-LTE conditions. The current mission plan for measuring the non-LTE upper atmosphere is described, as well as the general purpose non-LTE retrieval scheme developed for analyzing those measurements.
  •  
10.
  • Manuilova, R.O., et al. (författare)
  • Modelling of non-LTE limb spectra of i.r. ozone bands for the MIPAS space experiment
  • 1998
  • Ingår i: Journal of Quantitative Spectroscopy and Radiative Transfer. - 0022-4073 .- 1879-1352. ; 59:3-5, s. 405-422
  • Tidskriftsartikel (refereegranskat)abstract
    • A new model for calculating the populations of the ozone vibrational states under non-LTE (Local Thermodynamic Equilibrium) conditions is presented. In the model, 23 vibrational levels of the O3 molecule, as well as three vibrational levels of the O2 molecule and two vibrational levels of the N2 molecule, are considered. The radiative transfer at the break-down of LTE was treated explicitly for 150 000 ro-vibrational transitions. The populations obtained were used to calculate limb radiances in various spectral regions of the 4.8 and 9.6 μm bands. Test retrievals of O3 vertical volume mixing ratio (VMR) profiles with a radiance model disregarding non-LTE were performed in order to assess the potential impact of non-LTE effects on the retrieval of the O3 abundances from MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) measurements.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy