SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "hsv:(TEKNIK OCH TEKNOLOGIER) hsv:(Maskinteknik) hsv:(Rymd och flygteknik) ;pers:(Sam Lydia)"

Sökning: hsv:(TEKNIK OCH TEKNOLOGIER) hsv:(Maskinteknik) hsv:(Rymd och flygteknik) > Sam Lydia

  • Resultat 1-10 av 23
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bhardwaj, Anshuman, et al. (författare)
  • A lake detection algorithm (LDA) using Landsat 8 data : A comparative approach in glacial environment
  • 2015
  • Ingår i: International Journal of Applied Earth Observation and Geoinformation. - : Elsevier BV. - 1569-8432 .- 1872-826X. ; 38, s. 150-163
  • Tidskriftsartikel (refereegranskat)abstract
    • Glacial lakes show a wide range of turbidity. Owing to this, the normalized difference water indices (NDWIs) as proposed by many researchers, do not give appropriate results in case of glacial lakes. In addition, the sub-pixel proportion of water and use of different optical band combinations are also reported to produce varying results. In the wake of the changing climate and increasing GLOFs (glacial lake outburst floods), there is a need to utilize wide optical and thermal capabilities of Landsat 8 data for the automated detection of glacial lakes. In the present study, the optical and thermal bandwidths of Landsat 8 data were explored along with the terrain slope parameter derived from Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model Version2 (ASTER GDEM V2), for detecting and mapping glacial lakes. The validation of the algorithm was performed using manually digitized and subsequently field corrected lake boundaries. The pre-existing NDWIs were also evaluated to determine the supremacy and the stability of the proposed algorithm for glacial lake detection. Two new parameters, LDI (lake detection index) and LF (lake fraction) were proposed to comment on the performances of the indices. The lake detection algorithm (LDA) performed best in case of both, mixed lake pixels and pure lake pixels with no false detections (LDI = 0.98) and very less areal underestimation (LF= 0.73). The coefficient of determination (R-2) between areal extents of lake pixels, extracted using the LDA and the actual lake area, was very high (0.99). With understanding of the terrain conditions and slight threshold adjustments, this work can be replicated for any mountainous region of the world.
  •  
2.
  • Bhardwaj, Anshuman, et al. (författare)
  • A review on remotely sensed land surface temperature anomaly as an earthquake precursor
  • 2017
  • Ingår i: International Journal of Applied Earth Observation and Geoinformation. - : Elsevier. - 1569-8432 .- 1872-826X. ; 63, s. 158-166
  • Tidskriftsartikel (refereegranskat)abstract
    • The low predictability of earthquakes and the high uncertainty associated with their forecasts make earthquakes one of the worst natural calamities, capable of causing instant loss of life and property. Here, we discuss the studies reporting the observed anomalies in the satellite-derived Land Surface Temperature (LST) before an earthquake. We compile the conclusions of these studies and evaluate the use of remotely sensed LST anomalies as precursors of earthquakes. The arrival times and the amplitudes of the anomalies vary widely, thus making it difficult to consider them as universal markers to issue earthquake warnings. Based on the randomness in the observations of these precursors, we support employing a global-scale monitoring system to detect statistically robust anomalous geophysical signals prior to earthquakes before considering them as definite precursors.
  •  
3.
  • Bhardwaj, Anshuman, et al. (författare)
  • Applicability of Landsat 8 data for characterizing glacier facies and supraglacial debris
  • 2015
  • Ingår i: International Journal of Applied Earth Observation and Geoinformation. - : Elsevier BV. - 1569-8432 .- 1872-826X. ; 38, s. 51-64
  • Tidskriftsartikel (refereegranskat)abstract
    • present work evaluates the applicability of operational land imager (OLI) and thermal infrared sensor (TIRS) on-board Landsat 8 satellite. We demonstrate an algorithm for automated mapping of glacier facies and supraglacial debris using data collected in blue, near infrared (NIR), short wave infrared (SWIR) and thermal infrared (TIR) bands. The reflectance properties invisible and NIR regions of OLI for various glacier facies are in contrast with those in SWIR region. Based on the premise that different surface types (snow, ice and debris) of a glacier should show distinct thermal regimes, the 'at-satellite brightness temperature' obtained using TIRS was used as a base layer for developing the algorithm. This base layer was enhanced and modified using contrasting reflectance properties of OLI bands. In addition to fades and debris cover characterization, another interesting outcome of this algorithm was extraction of crevasses on the glacier surface which were distinctly visible in output and classified images. The validity of this algorithm was checked using field data along a transect of the glacier acquired during the satellite pass over the study area. With slight scene-dependent threshold adjustments, this work can be replicated for mapping glacier facies and supraglacial debris in any alpine valley glacier
  •  
4.
  • Bhardwaj, Anshuman, et al. (författare)
  • Are Slope Streaks Indicative of Global‐Scale Aqueous Processes on Contemporary Mars?
  • 2019
  • Ingår i: Reviews of geophysics. - : American Geophysical Union (AGU). - 8755-1209 .- 1944-9208. ; 57:1, s. 48-77
  • Tidskriftsartikel (refereegranskat)abstract
    • Slope streaks are prevalent and intriguing dark albedo surface features on contemporary Mars. Slope streaks are readily observed in the equatorial and subequatorial dusty regolith regions with low thermal inertia. They gradually fade over decadal timescales. The proposed mechanisms for their formation vary widely based on several physicochemical and geomorphological explanations. The scientific community is divided in proposing both dry and wet mechanisms for the formation of slope streaks. Here we perform a systematic evaluation of the literature for these wet and dry mechanisms. We discuss the probable constraints on the various proposed mechanisms and provide perspectives on the plausible process driving global‐scale slope streak formation on contemporary Mars. Although per our understanding, a thorough consideration of the global distribution of slope streaks, their morphology and topography, flow characteristics, physicochemical and atmospheric coincidences, and terrestrial analogies weighs more in favor of several wet mechanisms, we acknowledge that such wet mechanisms cannot explain all the reported morphological and terrain variations of slope streaks. Thus, we suggest that explanations considering both dry and wet processes can more holistically describe all the observed morphological variations among slope streaks. We further acknowledge the constraints on the resolutions of remote sensing data and on our understanding of the Martian mineralogy, climate, and atmosphere and recommend continuous investigations in this direction using future remote sensing acquisitions and simulations. In this regard, finding more wet and dry terrestrial analogs for Martian slope streaks and studying them at high spatiotemporal resolutions can greatly improve our understanding.
  •  
5.
  • Bhardwaj, Anshuman, et al. (författare)
  • Automated detection and temporal monitoring of crevasses using remote sensing and their implications for glacier dynamics
  • 2016
  • Ingår i: Annals of Glaciology. - 0260-3055 .- 1727-5644. ; 57:71, s. 81-91
  • Tidskriftsartikel (refereegranskat)abstract
    • Detailed studies on temporal changes of crevasses and their linkage with glacier dynamics are scarce in the Himalayan context. Observations of temporally changing surficial crevasse patterns and their orientations are suggestive of the processes that determine seasonal glacier flow characteristics. In the present study, on a Himalayan valley glacier, changing crevasse patterns and orientations were detected and mapped on Landsat 8 images in an automated procedure using the ratio of Thermal Infrared Sensor (TIRS) band 10 to Optical Land Imager (OLI) shortwave infrared (SWIR) band 6. The ratio was capable of mapping even crevasses falling under mountain shadows. Differential GPS observations suggested an average error of 3.65% and root-mean-square error of 6.32m in crevasse lengths. A year-round observation of these crevasses, coupled with field-based surface velocity measurements, provided some interesting interpretations of seasonal glacier dynamics.
  •  
6.
  • Bhardwaj, Anshuman, et al. (författare)
  • Discovery of recurring slope lineae candidates in Mawrth Vallis, Mars
  • 2019
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Several interpretations of recurring slope lineae (RSL) have related RSL to the potential presence of transient liquid water on Mars. Such probable signs of liquid water have implications for Mars exploration in terms of rover safety, planetary protection during rover operations, and the current habitability of the planet. Mawrth Vallis has always been a prime target to be considered for Mars rover missions due to its rich mineralogy. Most recently, Mawrth Vallis was one of the two final candidates selected by the European Space Agency as a landing site for the ExoMars 2020 mission. Therefore, all surface features and landforms in Mawrth Vallis that may be of special interest in terms of scientific goals, rover safety, and operations must be scrutinised to better assess it for future Mars missions. Here, we report on the initial detection of RSL candidates in two craters of Mawrth Vallis. The new sightings were made outside of established RSL regions and further prompt the inclusion of a new geographical region within the RSL candidate group. Our inferences on the RSL candidates are based on several morphological and geophysical evidences and analogies: (i) the dimensions of the RSL candidates are consistent with confirmed mid-latitude RSL; (ii) albedo and thermal inertia values are comparable to those of other mid-latitude RSL sites; and (iii) features are found in a summer season image and on the steep and warmest slopes. These results denote the plausible presence of transient liquid brines close to the previously proposed landing ellipse of the ExoMars rover, rendering this site particularly relevant to the search of life. Further investigations of Mawrth Vallis carried out at higher spatial and temporal resolutions are needed to identify more of such features at local scales to maximize the scientific return from the future Mars rovers, to prevent probable biological contamination during rover operations, to evade damage to rover components as brines can be highly corrosive, and to quantify the ability of the regolith at mid-latitudes to capture atmospheric water which is relevant for in-situ-resource utilization.
  •  
7.
  • Bhardwaj, Anshuman, et al. (författare)
  • LiDAR remote sensing of the cryosphere : Present applications and future prospects
  • 2016
  • Ingår i: Remote Sensing of Environment. - : Elsevier BV. - 0034-4257 .- 1879-0704. ; 177, s. 125-143
  • Tidskriftsartikel (refereegranskat)abstract
    • The cryosphere consists of frozen water and includes lakes/rivers/sea ice, glaciers, ice caps/sheets, snow cover, and permafrost. Because highly reflective snow and ice are the main components of the cryosphere, it plays an important role in the global energy balance. Thus, any qualitative or quantitative change in the physical properties and extents of the cryosphere affects global air circulation, ocean and air temperatures, sea level, and ocean current patterns. Due to the hardships involved in collecting ground control points and field data for high alpine glaciers or vast polar ice sheets, several researchers are currently using remote sensing. Satellites provide an effective space-borne platform for remotely sensing frozen areas at the global and regional scales. However, satellite remote sensing has several constraints, such as limited spatial and temporal resolutions and expensive data acquisition. Therefore, aerial and terrestrial remote sensing platforms and sensors are needed to cover temporal and spatial gaps for comprehensive cryospheric research. Light Detection and Ranging (LiDAR) antennas form a group of active remote sensors that can easily be deployed on all three platforms, i.e., satellite, aerial, and terrestrial. The generation of elevation data for glacial and snow-covered terrain from photogrammetry requires high contrast amongst various reflective surfaces (ice, snow, firn, and slush). Conventional passive optical remote sensors do not provide the necessary accuracy, especially due to the unavailability of reliable ground control points. However, active LiDAR sensors can fill this research gap and provide high-resolution and accurate Digital Elevation Models (DEMs). Due to the obvious advantages of LiDAR over conventional passive remote sensors, the number of LiDAR-based cryospheric studies has increased in recent years. In this review, we highlight studies that have utilised LiDAR sensors for the cryospheric research of various features, such as snow cover, polar ice sheets and their atmospheres, alpine glaciers, and permafrost. Because this technology shows immense promise for applications in future cryospheric research, we also emphasise the prospects of utilising LiDAR sensors. In this paper, a large compilation of relevant references is presented to allow readers to explore particular topics of interest.
  •  
8.
  • Bhardwaj, Anshuman, et al. (författare)
  • Mapping debris-covered glaciers and identifying factors affecting the accuracy
  • 2014
  • Ingår i: Cold Regions Science and Technology. - : Elsevier BV. - 0165-232X .- 1872-7441. ; 106-107, s. 161-174
  • Tidskriftsartikel (refereegranskat)abstract
    • Supraglacial debris significantly hampers the mapping of glaciers using remote sensing data. A semi-automated approach for the mapping of debris-covered glacier was applied, which combined the inputs from thermal and optical remote sensing data and the Digital Elevation Model (DEM) derived morphometric parameters. A thermal mask that delineates the supraglacial debris extent was generated by the thresholding of surface temperature layer obtained from Landsat TM/ETM. + thermal band satellite data. The extent of clean glacier ice was identified by band ratioing and thresholding of TM/ETM. + 4 and TM/ETM. + 5 bands. Morphometric parameters like slope, plan curvature and profile curvature were rearranged in similar surface groups using the technique of cluster analysis. All these masks were vectorized and final classification maps were generated using geographic information system (GIS) overlay operations. The areal extent of semi-automated outlines of Hamtah and Patsio Glaciers derived from cluster analysis varied from manually derived outline using pan-sharpened Landsat ETM. + September 2000 image by -. 1.3% and -. 1.6%, respectively. Year 2011 classification map for Patsio Glacier was compared with the field observations and a high correlation and overall accuracy (~. 91%) were observed. The same classification methodology was adopted for images of years 2000 and 1989 for Patsio Glacier to observe the effects of varying snow cover patterns on adopted methodology. Also the methodology was adopted and verified for Hamtah Glacier, with different geometry and terrain conditions as compared to Patsio Glacier. Although the spatial resolution limitation of ASTER GDEM and Landsat TM/ETM. + thermal band limits the automated mapping of small debris-covered glaciers, the outcomes are still favorable enough to apply such methodologies for mapping different types of debris-covered glaciers in the future
  •  
9.
  • Bhardwaj, Anshuman, et al. (författare)
  • Martian slope streaks as plausible indicators of transient water activity
  • 2017
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Slope streaks have been frequently observed in the equatorial, low thermal inertia and dusty regions of Mars. The reason behind their formation remains unclear with proposed hypotheses for both dry and wet mechanisms. Here, we report an up-to-date distribution and morphometric investigation of Martian slope streaks. We find: (i) a remarkable coexistence of the slope streak distribution with the regions on Mars with high abundances of water-equivalent hydrogen, chlorine, and iron; (ii) favourable thermodynamic conditions for transient deliquescence and brine development in the slope streak regions; (iii) a significant concurrence of slope streak distribution with the regions of enhanced atmospheric water vapour concentration, thus suggestive of a present-day regolith-atmosphere water cycle; and (iv) terrain preferences and flow patterns supporting a wet mechanism for slope streaks. These results suggest a strong local regolith-atmosphere water coupling in the slope streak regions that leads to the formation of these fluidised features. Our conclusions can have profound astrobiological, habitability, environmental, and planetary protection implications
  •  
10.
  • Bhardwaj, Anshuman, et al. (författare)
  • MODIS-based estimates of strong snow surface temperature anomaly related to high altitude earthquakes of 2015
  • 2017
  • Ingår i: Remote Sensing of Environment. - : Elsevier. - 0034-4257 .- 1879-0704. ; 188, s. 1-8
  • Tidskriftsartikel (refereegranskat)abstract
    • The high levels of uncertainty associated with earthquake prediction render earthquakes some of the worst natural calamities. Here, we present our observations of MODerate resolution Imaging Spectroradiometer (MODIS)-derived Land Surface Temperature (LST) anomaly for earthquakes in the largest tectonically active Himalayan and Andean mountain belts. We report the appearance of fairly detectable pre-earthquake Snow Surface Temperature (SST) anomalies. We use 16 years (2000–2015) of MODIS LST time-series data to robustly conclude our findings for three of the most destructive earthquakes that occurred in 2015 in the high mountains of Nepal, Chile, and Afghanistan. We propose the physical basis behind higher sensitivity of snow towards geothermal emissions. Although the preliminary appearance of SST anomalies and their amplitudes vary, we propose employing a global-scale monitoring system for detecting and studying such spatio-temporal geophysical signals. With the advent of improved remote sensors, we anticipate that such efforts can be another step towards improved earthquake predictions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 23

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy