SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "hsv:(TEKNIK OCH TEKNOLOGIER) hsv:(Maskinteknik) hsv:(Rymd och flygteknik) ;pers:(Sundin Erik 1979)"

Sökning: hsv:(TEKNIK OCH TEKNOLOGIER) hsv:(Maskinteknik) hsv:(Rymd och flygteknik) > Sundin Erik 1979

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Marouf Rashid, Hawal, 1982, et al. (författare)
  • Compact wideband passive and active component chips for radio astronomy instrumentation
  • 2019
  • Ingår i: ISSTT 2019 - 30th International Symposium on Space Terahertz Technology, Proceedings Book. ; , s. 50-56
  • Konferensbidrag (refereegranskat)abstract
    • In the 2SB receivers, the rejection ratio is determined among other factors by the performance of the quadrature hybrids. We have developed and fine‐tuned components that intended to be used in the IF chain and meet the requirements for new generation of compact wideband 2SB receivers. We present here the design and characterization of three multi‐section compact wideband 3 dB quadrature couplers (coupled line coupler – Lange coupler–coupled line coupler). Specifically, the miniaturized 3‐section hybrid chip made using thin‐film technology utilizes gold plated transmission lines and air bridges to connect the fingers of the Lange coupler (middle section The hybrids were designed to have the amplitude and phase imbalance better than 0.6 dB and ±3° respectively over a 3.5-12.5 GHz and 4-16 GHz frequency bands. Experimental verification of the assembly at 293 K and 4 K shows very good agreement between the measurements and simulations. Additionally, we demonstrate the suitability of the miniature hybrid chips, by implementing them in a balanced amplifier designed using a modular approach, which demonstrated promising results.
  •  
2.
  • Belitsky, Victor, 1955, et al. (författare)
  • ALMA Band 2 Cold Cartridge Assembly Design
  • 2022
  • Ingår i: 32nd International Symposium of Space Terahertz Technology, ISSTT 2022.
  • Konferensbidrag (refereegranskat)abstract
    • As part of the ALMA development, we present the design of the ALMA Band 2 Cold Cartridge Assembly (CCA). The Band 2 is the last band that completes the suit of the 10 receiver channels of ALMA. The originally planned ALMA Band 2 receiver cartridge should cover the RF band of 67 - -90 GHz. The recent progress in technology, optics, OMT design and mm-wave amplifiers, however allowed to implement receiver that has an extended RF band up to 116 GHz. Furthermore, the Band 2 receiver pursues 2SB layout and provides 4-18 GHz IF band for two sidebands in a dual-polarization configuration. Here, we describe the design of the Band 2 CCA that includes optics, amplifier assembly, internal RF transport, mechanics and cryogenics. The downconverter part and performances are described elsewhere.
  •  
3.
  • Belitsky, Victor, 1955, et al. (författare)
  • Prototype ALMA Band 5 Cartridge:Design and Performance
  • 2009
  • Ingår i: Proceedings of the 20TH INTERNATIONAL SYMPOSIUM ON SPACE TERAHERTZ TECHNOLOGY, Charlottesville, VA, USA, April 20-22, 2009, s. 2-5.
  • Konferensbidrag (refereegranskat)abstract
    • The Atacama Large Millimeter/submillimeterArray (ALMA), an international astronomy facility, is apartnership of East Asia, Europe and North America incooperation with the Republic of Chile and aims to build aninterferometer radio telescope consisting of more than 60antennas. The instrument is under construction at the Llano deChajnantor, about 50 km east of San Pedro de Atacama, Chile.This work presents a part of ALMA frontend, the development,design and performance of one of the frequency channels of theALMA receiver, the Band 5 prototype cartridge for 163 – 211GHz frequency band.
  •  
4.
  • Belitsky, Victor, 1955, et al. (författare)
  • Terahertz Instrumentation For Radio Astronomy
  • 2009
  • Ingår i: International Symposium on Terahertz Science and Technology between Japan and Sweden. ; , s. 28-29
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Radio Astronomy was always a frontrunner in the demand on terahertz technology. Millimetre and sub-millimetre wave receivers operate at ground-based observatories for more than 20 years with real Terahertz instruments making its way to ground-based [1] and space-based observatories, e.g., Herschel HIFI, during last years.In this talk, we will look at the key requirements to the radio astronomy and environmental science terahertz receivers using heterodyne technology. The most promising and established technologies for high-resolution spectroscopy instrumentation will be discussed. Using results of the Group for Advanced Receiver Development for Onsala Space Observatory 20 m telescope, for Atacama Pathfinder Experiment (APEX) telescope and ALMA Project Band 5, we will illustrate the trends and achievements in the terahertz instrumentation for radio astronomy.
  •  
5.
  • Billade, Bhushan, 1982, et al. (författare)
  • Performance of the first ALMA Band 5 production cartridge
  • 2011
  • Ingår i: Proceedings of the 22nd International Symposium on Space Terahertz Technology, April 26-28th, 2011 - Tucson, Arizona, USA. ; , s. 56-56
  • Konferensbidrag (refereegranskat)abstract
    • We present performance of the first ALMA Band 5 production cartridge, covering RF frequencies from 163 GHz to 211 GHz. ALMA Band 5 is a dual polarization, sideband separation (2SB) receiver based on all Niobium (Nb) SuperconductorInsulator-Superconductor (SIS) tunnel junction mixer, providing 16 GHz of instantaneous RF bandwidth for the astronomy observations. The 2SB mixer for each polarization employs a quadrature layout. The sideband separation occurs at the output of the IF hybrid that has integrated bias-T for biasing the mixers, and is produced using superconducting thin film technology. Experimental verification of the Band 5 cold cartridge performed together with warm cartridge assembly, confirms the system noise temperature below 45 K, less than five quantum noise (5 hf/k) over most of the RF band, which is to our knowledge, the best results at these frequencies. The measurement of the sideband rejection indicates that the sideband rejection better than 10 dB over 90% of the observational band.
  •  
6.
  • Desmaris, Vincent, 1977, et al. (författare)
  • Characterization of GaN-based Low Noise Amplifiers at Cryogenic Temperatures
  • 2019
  • Ingår i: ISSTT 2019 - 30th International Symposium on Space Terahertz Technology, Proceedings Book. ; , s. 67-68
  • Konferensbidrag (refereegranskat)abstract
    • In this paper, we present the first characterization of GaN-based Low-Noise Amplifiers (LNAs) at cryogenic temperatures for prospective use in radio-astronomy receivers. Both commercial and prototype LNAs fabricated in-house demonstrate a nine-fold improvement of their room-temperature noise performance when cooled to about 10 K. Very promising noise temperatures of about 8 K were measured without any specific optimization of the LNA design for cryogenic operation.
  •  
7.
  • Lapkin, Igor, 1963, et al. (författare)
  • New optics for SEPIA- Heterodyne facility instrument for the APEX telescope
  • 2019
  • Ingår i: ISSTT 2019 - 30th International Symposium on Space Terahertz Technology, Proceedings Book. ; , s. 150-154
  • Konferensbidrag (refereegranskat)abstract
    • The design of SEPIA (Swedish ESO PI Instrument for APEX) was driven by the idea of using ALMA receiver cartridges on the APEX telescope. SEPIA was installed at the guest position of the Naismith cabin A, APEX telescope in early 2015. The SEPIA cryostat and optics was designed to accommodate up to 3 ALMA cartridges. In 2017, the APEX facility instrument SHeFI was decommissioned and SEPIA was accepted as its successor. Moving SEPIA from its PI into Facility Instrument position brought additional constrains due to the severe limitations of the available space. That had led to the necessity of complete redesigning of the SEPIA tertiary optics. During February-March 2019, the new tertiary optics was installed in the APEX Cabin A and SEPIA was placed at its final Facility Instrument position. Here, we present the details of the optical design, layout of the optical component placement, the beam alignment technique, the results of the alignment and SEPIA technical commissioning results at the APEX telescope.
  •  
8.
  •  
9.
  • Meledin, Denis, 1974, et al. (författare)
  • APEX Band T2: A 1.25 – 1.39 THz Waveguide Balanced HEB Receiver
  • 2008
  • Ingår i: Proceedings of The 19th International Symposium on Space Terahertz Technology, Groningen, 28-30 April, 2008, ed. W. Wild, Space Research Organization of the Netherlands (SRON). ; part I, s. 162-166
  • Konferensbidrag (refereegranskat)abstract
    • A waveguide 1.25 - 1.39 THz Hot Electron Bolometer (HEB) balanced receiver was successfully developed, characterized and installed at the Atacama Pathfinder EXperiment (APEX) telescope. The receiver employs a quadrature balanced scheme using a waveguide 90-degree 3 dB RF hybrid, HEB mixers and a 180-degree IF hybrid. The HEB mixers are based on ultrathin NbN film deposited on crystalline quartz with a MgO buffer layer. Integrated into the multi-channel APEX facility receiver (SHeFI), the results presented here demonstrate exceptional performance; a receiver noise temperature of 1000 K measured at the telescope at the center of the receiver IF band 2-4 GHz, and at an LO frequency of 1294 GHz. Stability of the receiver is in line with the SIS mixer bands of the SHeFI, and gives a spectroscopic Allan time of more than 200 s at 1382 GHz with a noise bandwidth of 1 MHz.
  •  
10.
  • Meledin, Denis, 1974, et al. (författare)
  • SEPIA345: A 345 GHz dual polarization heterodyne receiver channel for SEPIA at the APEX telescope
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 668
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. We describe the new SEPIA345 heterodyne receiver channel installed at the Atacama Pathfinder EXperiment (APEX) telescope, including details of its configuration, characteristics, and test results on sky. SEPIA345 is designed and built to be a part of the Swedish ESO PI Instrument for the APEX telescope (SEPIA). This new receiver channel is suitable for very high-resolution spectroscopy and covers the frequency range 272- 376 GHz. It utilizes a dual polarization sideband separating (2SB) receiver architecture, employing superconductor-isolator-superconductor mixers (SIS), and provides an intermediate frequency (IF) band of 4- 12 GHz for each sideband and polarization, thus covering a total instantaneous IF bandwidth of 4 ÃÂ - 8 = 32 GHz. Aims. This paper provides a description of the new receiver in terms of its hardware design, performance, and commissioning results. Methods. The methods of design, construction, and testing of the new receiver are presented. Results. The achieved receiver performance in terms of noise temperature, sideband rejection, stability, and other parameters are described. Conclusions. SEPIA345 is a commissioned APEX facility instrument with state-of-the-art wideband IF performance. It has been available on the APEX telescope for science observations since July 2021.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy