SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "hsv:(TEKNIK OCH TEKNOLOGIER) hsv:(Maskinteknik) hsv:(Rymd och flygteknik) ;pers:(Urban Joachim 1964)"

Sökning: hsv:(TEKNIK OCH TEKNOLOGIER) hsv:(Maskinteknik) hsv:(Rymd och flygteknik) > Urban Joachim 1964

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Baron, P., et al. (författare)
  • AMATERASU: Model for atmospheric TeraHertz Radiation analysis and simulation
  • 2008
  • Ingår i: Journal of the National Institute of Information and Communications Technology. - 1349-3205. ; 55:1, s. 109-121
  • Tidskriftsartikel (refereegranskat)abstract
    • We describe the current status of the Advanced Model for Atmospheric TeraHertz Radiation Analysis and Simulation (AMATERASU) that is being developed in the framework of the NICT THz project. This code aims to be used for studying the insterest of the THz frequency region for atmospheric remote sensing, communication systems and estimate the impact of the THz thermal atmospheric emission in the Earth energy budget. This paper presents the first stage of the model development that concerns a non scattering and a horizontal homogeneous atmosphere, e.g., the geophysical parameters are only altitude dependent. A scattering module is being developed but it is presented in an other paper in this issue. The model is based on the Microwave Observation and Lines Estimation and REtrieval code (MOLIERE). The absorption coefficient module has been modified in order to extend the frequency coverage from the submillimeter wavelength to the near InfraRed region. A new radiative transfer module has been implemented that can handle the different types of optical paths and any location for the receiver. AMATERASU includes the original MOLIERE instrument simulator and retrieval codes. The validation methodology is discussed and some examples of the current applications are given. The next steps of the development are presented in the conclusion including the modeling of the horizontal inhomogeneties in the atmopshere.
  •  
2.
  • Baron, P., et al. (författare)
  • The Level 2 research product algorithms for the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES)
  • 2011
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 4, s. 2105-2124
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper describes the algorithms of the level-2 research (L2r) processing chain developed for the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES). The chain has been developed in parallel to the operational chain for conducting researches on calibration and retrieval algorithms. L2r chain products are available to the scientific community. The objective of version 2 is the retrieval of the vertical distribution of trace gases in the altitude range of 18–90 km. A theoretical error analysis is conducted to estimate the retrieval feasibility of key parameters of the processing: line-of-sight elevation tangent altitudes (or angles), temperature and ozone profiles. While pointing information is often retrieved from molecular oxygen lines, there is no oxygen line in the SMILES spectra, so the strong ozone line at 625.371 GHz has been chosen. The pointing parameters and the ozone profiles are retrieved from the line wings which are measured with high signal to noise ratio, whereas the temperature profile is retrieved from the optically thick line center. The main systematic component of the retrieval error was found to be the neglect of the non-linearity of the radiometric gain in the calibration procedure. This causes a temperature retrieval error of 5–10 K. Because of these large temperature errors, it is not possible to construct a reliable hydrostatic pressure profile. However, as a consequence of the retrieval of pointing parameters, pressure induced errors are significantly reduced if the retrieved trace gas profiles are represented on pressure levels instead of geometric altitude levels. Further, various setups of trace gas retrievals have been tested. The error analysis for the retrieved HOCl profile demonstrates that best results for inverting weak lines can be obtained by using narrow spectral windows.
  •  
3.
  • Brohede, Samuel, 1977, et al. (författare)
  • Odin stratospheric proxy NOy measurements and climatology
  • 2008
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 8:19, s. 5731-5754
  • Tidskriftsartikel (refereegranskat)abstract
    • Five years of OSIRIS (Optical Spectrograph and InfraRed Imager System) NO2 and SMR (Sub-millimetre and Millimetre Radiometer) HNO3 observations from the Odin satellite, combined with data from a photochemical box model, have been used to construct a stratospheric proxy NOy data set including the gases: NO, NO2, HNO3, 2×N2O5 and ClONO2. This Odin NOy climatology is based on all daytime measurements and contains monthly mean and standard deviation, expressed as mixing ratio or number density, as function of latitude or equivalent latitude (5° bins) on 17 vertical layers (altitude, pressure or potential temperature) between 14 and 46 km. Comparisons with coincident NOy profiles from the Atmospheric Chemistry Experiment-Fourier Transform Spectrometer (ACE-FTS) instrument were used to evaluate several methods to combine Odin observations with model data. This comparison indicates that the most appropriate merging technique uses OSIRIS measurements of NO2, scaled with model NO/NO2 ratios, to estimate NO. The sum of 2×N2O5 and ClONO2 is estimated from uncertainty-based weighted averages of scaled observations of SMR HNO3 and OSIRIS NO2. Comparisons with ACE-FTS suggest the precision (random error) and accuracy (systematic error) of Odin NOy profiles are about 15% and 20%, respectively. Further comparisons between Odin and the Canadian Middle Atmosphere Model (CMAM) show agreement to within 20% and 2 ppb throughout most of the stratosphere except in the polar vortices. The combination of good temporal and spatial coverage, a relatively long data record, and good accuracy and precision make this a valuable NOy product for various atmospheric studies and model assessments.
  •  
4.
  • Kasai, Y., et al. (författare)
  • Overview of the Martian atmospheric submillimetre sounder FIRE
  • 2012
  • Ingår i: Planetary and Space Science. - : Elsevier BV. - 0032-0633 .- 1873-5088. ; 63-64:SI, s. 62-82
  • Tidskriftsartikel (refereegranskat)abstract
    • We propose a submillimetre-wave atmospheric emission sounding instrument, called Far-InfraRed Experiment (FIRE), for the Japanese Martian exploration programme "Mars Exploration with Lander-Orbiter Synergy" (MELOS). The scientific target of FIRE/MELOS is to understand the dust suspended meteorology of the Mars. FIRE will provide key meteorological parameters, such as atmospheric temperature profiles for outside and inside dust storms, the abundance profile of the atmospheric compositions and their isotopes, and wind velocity profiles. FIRE will also provide the local time dependency of these parameters. The observational sensitivity of FIRE/MELOS is discussed in this paper. FIRE will explore the meteorological system of the Martian atmosphere including the interaction between its surface and atmosphere.
  •  
5.
  • Kasai, Y., et al. (författare)
  • Validation of stratospheric and mesospheric ozone observed by SMILES from International Space Station
  • 2013
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 6:9, s. 2311-2338
  • Tidskriftsartikel (refereegranskat)abstract
    • We observed ozone (O3) in the vertical region between 250 and 0.0005 hPa (~ 12–96 km) using the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) on the Japanese Experiment Module (JEM) of the International Space Station (ISS) between 12 October 2009 and 21 April 2010. The new 4 K superconducting heterodyne receiver technology of SMILES allowed us to obtain a one order of magnitude better signal-to-noise ratio for the O3 line observation compared to past spaceborne microwave instruments. The non-sun-synchronous orbit of the ISS allowed us to observe O3 at various local times. We assessed the quality of the vertical profiles of O3 in the 100–0.001 hPa (~ 16–90 km) region for the SMILES NICT Level 2 product version 2.1.5. The evaluation is based on four components: error analysis; internal comparisons of observations targeting three different instrumental setups for the same O3 625.371 GHz transition; internal comparisons of two different retrieval algorithms; and external comparisons for various local times with ozonesonde, satellite and balloon observations (ENVISAT/MIPAS, SCISAT/ACE-FTS, Odin/OSIRIS, Odin/SMR, Aura/MLS, TELIS). SMILES O3 data have an estimated absolute accuracy of better than 0.3 ppmv (3%) with a vertical resolution of 3–4 km over the 60 to 8 hPa range. The random error for a single measurement is better than the estimated systematic error, being less than 1, 2, and 7%, in the 40–1, 80–0.1, and 100–0.004 hPa pressure regions, respectively. SMILES O3 abundance was 10–20% lower than all other satellite measurements at 8–0.1 hPa due to an error arising from uncertainties of the tangent point information and the gain calibration for the intensity of the spectrum. SMILES O3 from observation frequency Band-B had better accuracy than that from Band-A. A two month period is required to accumulate measurements covering 24 h in local time of O3 profile. However such a dataset can also contain variation due to dynamical, seasonal, and latitudinal effects
  •  
6.
  •  
7.
  • Kirkwood, Sheila, et al. (författare)
  • Response of polar mesosphere summer echoes to geomagnetic disturbances in the Southern and Northern Hemispheres : The importance of nitric oxide
  • 2013
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 31:2, s. 333-347
  • Tidskriftsartikel (refereegranskat)abstract
    • The relationship between polar mesosphere summer echoes (PMSE) and geomagnetic disturbances (represented by magnetic I K indices) is examined. Calibrated PMSE reflectivities for the period May 2006-February 2012 are used from two 52.0/54.5 MHz radars located in Arctic Sweden (68 N, geomagnetic latitude 65 ) and at two different sites in Queen Maud Land, Antarctica (73/72 S, geomagnetic latitudes 62/63 ). In both the Northern Hemisphere (NH) and the Southern Hemisphere (SH) there is a strong increase in mean PMSE reflectivity between quiet and disturbed geomagnetic conditions. Mean volume reflectivities are slightly lower at the SH locations compared to the NH, but the position of the peak in the lognormal distribution of PMSE reflectivities is close to the same at both NH and SH locations, and varies only slightly with magnetic disturbance level. Differences between the sites, and between geomagnetic disturbance levels, are primarily due to differences in the high-reflectivity tail of the distribution. PMSE occurrence rates are essentially the same at both NH and SH locations during most of the PMSE season when a sufficiently low detection threshold is used so that the peak in the lognormal distribution is included. When the local-time dependence of the PMSE response to geomagnetic disturbance level is considered, the response in the NH is found to be immediate at most local times, but delayed by several hours in the afternoon sector and absent in the early evening. At the SH sites, at lower magnetic latitude, there is a delayed response (by several hours) at almost all local times. At the NH (auroral zone) site, the dependence on magnetic disturbance is highest during evening-to-morning hours. At the SH (sub-auroral) sites the response to magnetic disturbance is weaker but persists throughout the day. While the immediate response to magnetic activity can be qualitatively explained by changes in electron density resulting from energetic particle precipitation, the delayed response can largely be explained by changes in nitric oxide concentrations. Observations of nitric oxide concentration at PMSE heights by the Odin satellite support this hypothesis. Sensitivity to geomagnetic disturbances, including nitric oxide produced during these disturbances, can explain previously reported differences between sites in the auroral zone and those at higher or lower magnetic latitudes. The several-day lifetime of nitric oxide can also explain earlier reported discrepancies between high correlations for average conditions (year-by-year PMSE reflectivities and indices) and low correlations for minute-to-day timescales
  •  
8.
  • Muller, S.C., et al. (författare)
  • Validation of stratospheric water vapour measurements from the airborne microwave radiometer AMSOS
  • 2008
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 8:12, s. 3169-3183
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the validation of a water vapour dataset obtained by the Airborne Microwave Stratospheric Observing System AMSOS, a passive microwave radiometer operating at 183 GHz. Vertical profiles are retrieved from spectra by an optimal estimation method. The useful vertical range lies in the upper troposphere up to the mesosphere with an altitude resolution of 8 to 16 km and a horizontal resolution of about 57 km. Flight campaigns were performed once a year from 1998 to 2006 measuring the latitudinal distribution of water vapour from the tropics to the polar regions. The obtained profiles show clearly the main features of stratospheric water vapour in all latitudinal regions. Data are validated against a set of instruments comprising satellite, ground-based, airborne remote sensing and in-situ instruments. It appears that AMSOS profiles have a dry bias of 0 to ĝ€"20%, when compared to satellite experiments. Also a comparison between AMSOS and in-situ hygrosondes FISH and FLASH have been performed. A matching in the short overlap region in the upper troposphere of the lidar measurements from the DIAL
  •  
9.
  • Sato, T.O., et al. (författare)
  • Strato-mesospheric ClO observations by SMILES : error analysis and diurnal variation
  • 2012
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 5:11, s. 2809-2825
  • Tidskriftsartikel (refereegranskat)abstract
    • Chlorine monoxide (ClO) is the key species for anthropogenic ozone losses in the middle atmosphere. We observed ClO diurnal variations using the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) on the International Space Station, which has a non-sun-synchronous orbit. This includes the first global observations of the ClO diurnal variation from the stratosphere up to the mesosphere. The observation of mesospheric ClO was possible due to 10–20 times better signal-to-noise (S/N) ratio of the spectra than those of past or ongoing microwave/submillimeter-wave limb-emission sounders. We performed a quantitative error analysis for the strato- and mesospheric ClO from the Level-2 research (L2r) product version 2.1.5 taking into account all possible contributions of errors, i.e. errors due to spectrum noise, smoothing, and uncertainties in radiative transfer model and instrument functions. The SMILES L2r v2.1.5 ClO data are useful over the range from 0.01 and 100 hPa with a total error estimate of 10–30 pptv (about 10%) with averaging 100 profiles. The SMILES ClO vertical resolution is 3–5 km and 5–8 km for the stratosphere and mesosphere, respectively. The SMILES observations reproduced the diurnal variation of stratospheric ClO, with peak values at midday, observed previously by the Microwave Limb Sounder on the Upper Atmosphere Research Satellite (UARS/MLS). Mesospheric ClO demonstrated an opposite diurnal behavior, with nighttime values being larger than daytime values. A ClO enhancement of about 100 pptv was observed at 0.02 to 0.01 hPa (about 70–80 km) for 50° N–65° N from January–February 2010. The performance of SMILES ClO observations opens up new opportunities to investigate ClO up to the mesopause.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy