SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "hsv:(TEKNIK OCH TEKNOLOGIER) hsv:(Materialteknik) hsv:(Bearbetnings yt och fogningsteknik) ;pers:(Sul Young Taeg 1960)"

Sökning: hsv:(TEKNIK OCH TEKNOLOGIER) hsv:(Materialteknik) hsv:(Bearbetnings yt och fogningsteknik) > Sul Young Taeg 1960

  • Resultat 1-10 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Albrektsson, Tomas, 1945, et al. (författare)
  • Les implants oxidés perspectives d’avenir?
  • 2003
  • Ingår i: Réalités Cliniques. - 0999-5021. ; 13:4, s. 329-337
  • Tidskriftsartikel (refereegranskat)abstract
    • Tous les implants en titane présentent une fine couche adhérente d’oxydes de titane d’environ 5nm. Les techniques d’anodisation
  •  
2.
  • Byon, Eungsun, et al. (författare)
  • Electrochemical property and apatite formation of metal ion implanted titanium for medical implants
  • 2005
  • Ingår i: Surface & Coatings Technology. - : Elsevier BV. - 0257-8972. ; 200:1-4, s. 1018-1021
  • Tidskriftsartikel (refereegranskat)abstract
    • This work is concerned with the effects of Ca-ion implantation on the electrochemical behavior and biocompatibility of commercially pure Ti. The electrochemical behavior was tested by open-circuit potential transient and polarization experiments in Hanks' solution, and the biocompatibility was evaluated by soaking in simulated body fluid solution. The Ca-implanted Ti specimen showed more active electrochemical behavior than non-implanted specimen, and easier formation of apatite with good Ca / P ratio in the range of 1.38 and 1.60, revealing its potential as a bioactive material.
  •  
3.
  • Göransson, Anna, 1970, et al. (författare)
  • An in vitro comparison of possibly bioactive titanium implant surfaces.
  • 2009
  • Ingår i: Journal of Biomedical Materials Research Part A. - : Wiley. - 1552-4965 .- 1549-3296. ; 88:4, s. 1037-1047
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of the study was to compare Ca and P formation (CaP) and subsequent bone cell response of a blasted and four different possibly bioactive commercially pure (cp) titanium surfaces; 1. Fluoride etched (Fluoride), 2. Alkali-heat treated (AH), 3. Magnesium ion incorporated anodized (TiMgO), and 4. Nano HA coated and heat treated (nano HA) in vitro. Furthermore, to evaluate the significance of the SBF formed CaP coat on bone cell response. The surfaces were characterized by Optical Interferometry, Scanning Electron Microscopy (SEM) and X-ray Photoelectron Spectroscopy (XPS). CaP formation was evaluated after 12, 24 and 72 h in simulated body fluid (SBF). Primary human mandibular osteoblast-like cells were cultured on the various surfaces subjected to SBF for 72 h. Cellular attachment, differentiation (osteocalcin) and protein production (TGF-beta(1)) was evaluated after 3 h and 10 days respectively. Despite different morphological appearances, the roughness of the differently modified surfaces was similar. The possibly bioactive surfaces gave rise to an earlier CaP formation than the blasted surface, however, after 72 h the blasted surface demonstrated increased CaP formation compared to the possibly bioactive surfaces. Subsequent bone cell attachment was correlated to neither surface roughness nor the amount of formed CaP after SBF treatment. In contrast, osteocalcin and TGF-beta(1) production were largely correlated to the amount of CaP formed on the surfaces. However, bone response (cell attachment, osteocalcin and TGF-F production) on the blasted controls were similar or increased compared to the SBF treated fluoridated, AH and TiMgO surface. (c) 2008 Wiley Periodicals, Inc. J Biomed Mater Res, 2008.
  •  
4.
  • Kang, Byung-Soo, et al. (författare)
  • Metal plasma immersion ion implantation and deposition (MePIIID) on screw-shaped titanium implant: The effects of ion source, ion dose and acceleration voltage on surface chemistry and morphology.
  • 2011
  • Ingår i: Medical Engineering & Physics. - : Elsevier BV. - 0951-8320 .- 1350-4533. ; 33:6, s. 730-738
  • Tidskriftsartikel (refereegranskat)abstract
    • The present study investigated the effect of metal plasma immersion ion implantation and deposition (MePIIID) process parameters, i.e., plasma sources of magnesium and calcium, ion dose, and acceleration voltage on the surface chemistry and morphology of screw-type titanium implants that have been most widely used for osseointegrated implants. It is found that irrespective of plasma ion source, surface topography and roughness showed no differences at the nanometer level; that atom concentrations increased with ion dose but decreased with acceleration voltage. Data obtained from X-ray photoelectron spectroscopy and auger electron spectroscopy suggested that MePIIID process produces ‘intermixed’ layer of cathodic arc deposition and plasma immersion ion implantation. The MePIIID process may create desired bioactive surface chemistry of dental and orthopaedic implants by tailoring ion and plasma sources and thus enable investigations of the effect of the surface chemistry on bone response.
  •  
5.
  • Kang, Byung-Soo, et al. (författare)
  • The effect of calcium ion concentration on the bone response to oxidized titanium implants
  • 2012
  • Ingår i: Clinical Oral Implants Research. - Malden, USA : Wiley-Blackwell. - 0905-7161 .- 1600-0501. ; 23:6, s. 690-697
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim: To investigate the effect of calcium concentration on the bone tissue response to Ca-incorporated titanium implants.Materials and methods: Two titanium surfaces containing 4.2% and 6.6% calcium were prepared using the micro-arc oxidation process. The implants were inserted in the tibia of nine New Zealand White rabbits. After 6 weeks of healing, the bone response to the implants was quantitatively compared by biomechanical and histomorphometrical measurements.Results: Ca 4.2% and Ca 6.6% containing implants revealed no distinctive differences in their qualitative surface chemistry; chemical bonding state of Ca in titanium oxide was mainly calcium titanates. No significant differences were observed between two implants in peak removal torque and shear strength comparisons (P>0.05). Histomorphometrical analyses presented no significant differences in bonemetal contact, bone area and newly formed bone measurements between two implants (P>0.05).Conclusions: From biomechanical and histomorphometrical measurements, the two calcium concentrations in this study did not differ significantly with respect to their influence on the bone tissue response. This similar bone response in rabbit tibiae may be explained by the similarity of the qualitative Ca chemistry in titanium surfaces.
  •  
6.
  • Sul, Young-Taeg, 1960, et al. (författare)
  • Biomechanical Measurements of Calcium-Incorporated Oxidized Implants in Rabbit Bone: Effect of Calcium Surface Chemistry of a Novel Implant
  • 2004
  • Ingår i: Clinical Implant Dentistry and Related Research. - 1523-0899. ; 6:2, s. 101-10
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: In oral implantology there has been a general trend away from machine-turned minimally rough and acid-etched and blasted implants toward intermediary roughened surfaces. Mechanical interlocking at micron resolution is claimed to be the dominant reason for the fixation of such implants in bone. However, clinical demands for stronger and faster bone bonding to the implant (eg, in immediately loaded and compromised bone cases) have motivated the development of novel surfaces capable of chemical bonding. PURPOSE: The purpose of the present study is to investigate bone tissue reactions to a newly developed calciumincorporated oxidized implant. The specific aim is to assess the effect of calcium surface chemistry on the bone response. MATERIALS AND METHODS: Calcium (Ca) ion-incorporated implants were prepared by micro arc oxidation methods. Surface oxide properties were characterized by using various surface analytic techniques involving scanning electron microscopy, x-ray diffractometry, x-ray photoelectron spectroscopy, and optical interferometry. Twenty screw-shaped commercially pure (CP) titanium implants (10 turned implants [controls] and 10 Ca-incorporated implants [tests]) were inserted in the femoral condyles of 10 New Zealand White rabbits. RESULTS: After a healing period of 6 weeks, resonance frequency analyses and removal torque measurements of the Ca-incorporated oxidized implants demonstrated statistically significant improvements of implant integration with bone in comparison to machine-turned control implants (p = 0.013 and p = 0.005, respectively). CONCLUSIONS: The Ca-reinforced surface chemistry of the oxidized implants significantly improved bone responses in a rabbit model. The present study suggests that biochemical bonding at the bone-implant interface, in combination with mechanical interlocking, may play a dominant role in the fixation of Ca-incorporated oxidized implants in bone. The observed rapid and strong integration of test Ca implants may have clinical implications for immediate or early loading and improved performance in compromised bone.
  •  
7.
  • Sul, Young-Taeg, 1960, et al. (författare)
  • Bone reactions to oxidized titanium implants with electrochemical anion sulphuric acid and phosphoric acid incorporation.
  • 2002
  • Ingår i: Clin Implant Dent Relat Res. - 0905-7161. ; 4:2, s. 78-87
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: The importance of the surface properties of implants for a successful osseointegration has been emphasized. It is generally known that bone response to implant surfaces is considerably related to the various surface properties. PURPOSE: The purpose of this study was to investigate bone tissue reactions to multifactorial biocompatibility of the surface oxide of electrochemically oxidized titanium implants. The ultimate objective was to improve surface quality, resulting in enhancement of clinical outcomes of osseointegrated implants. Materials and METHODS: Three different surface types of commercially pure titanium (c.p. Ti) implants were prepared. Turned implants were used for controls and test implants were prepared by the micro arc oxidation (MAO) method, either in sulphuric acid (S implants) or in phosphoric acid (P implants). Implants were inserted in the femur and tibia of 10 mature New Zealand White rabbits. The bone response was evaluated by biomechanical tests, histology, and histomorphometry. The follow-up time was 6 weeks. RESULTS: The mean peak values of the removal torque showed significant differences between control and test S implants (p =.022) but showed no significant differences between control and test P implants (p =.195) or between test S and test P implants (p =.457). In addition, the histomorphometric comparisons of the bone-to-metal contact around entire implants demonstrated 186% increase in S implants (p =.028) and 232% increase in P implants (p =.028) compared with the paired control groups. Quantification of the bone area in the threads did not show any significant differences. CONCLUSIONS: The present results suggest that the primary mode of action in strong bone response to S implants is mechanical interlocking, and to P implants, it is biochemical interaction. It is possible that the phosphate groups in the titanium oxide of P implants provide potential chemical bonding sites for calcium ions and hydroxyapatite of the bone matrix during biologic mineralization. key words: bone responses, histomorphometry, oxidized implants, removal torque test, surface oxide properties
  •  
8.
  • Sul, Young-Taeg, 1960, et al. (författare)
  • Bone tissue responses to Mg-incorporated oxidized implants and machine-turned implants in the rabbit femur
  • 2005
  • Ingår i: Journal of Applied Biomaterials & Biomechanics 2005. - 1724-6024. ; 3:1, s. 18-28
  • Tidskriftsartikel (refereegranskat)abstract
    • Previous studies have demonstrated a significant improvement in the bone response to oxidized titanium implants. Little is known about the effects of specific oxide properties on the bone tissue responses to titanium implants. This study in-vestigated the bone tissue responses to magnesium (Mg)-incorporated oxidized titanium implants and machine-turned titani-um implants in the rabbit femur. The oxidized implants were prepared using micro arc oxidation (MAO) methods. Surface oxide properties were characterized by using various surface analytic techniques, involving scanning electron microscopy (SEM) equipped with energy dispersive spectrometer (EDS), X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS) and optical interferometry. Screw shaped titanium implants, 10 machine-turned implants (controls) and 10 Mg-incorporated im-plants (tests) were inserted in the femoral condyles of 10 New Zealand white rabbits. After a 6-week healing period, resonance frequency analyses and removal torque measurements of the Mg-incorporated oxidized implants demonstrated significant im-provements in implant integration with bone in comparison to machine-turned implants, p=0.007 and p=0.017, respectively. Bone growth in the pores of the oxidized implants was probably incomplete at a follow-up of 6 weeks, as indicated by SEM and EDS measurements. Mg-incorporated titanium implants significantly improved bone responses as compared with machine-turned control implants. Considering the differences and similarities of the surface oxide properties of controls and test im-plants, the enhanced bone responses to Mg-incorporated implants could be explained by the Mg surface chemistry of the test im-plants. (Journal of Applied Biomaterials & Biomechanics 2005; 3: 18-28)
  •  
9.
  • Sul, Young-Taeg, 1960, et al. (författare)
  • Characteristics of the surface oxides on turned and electrochemically oxidized pure titanium implants up to dielectric breakdown: the oxide thickness, micropore configurations, surface roughness, crystal structure and chemical composition.
  • 2002
  • Ingår i: Biomaterials. - 0142-9612 .- 1878-5905. ; 23:2, s. 491-501
  • Tidskriftsartikel (refereegranskat)abstract
    • Titanium implants have been used widely and successfully for various types of bone-anchored reconstructions. It is believed that properties of oxide films covering titanium implant surfaces are of crucial importance for a successful osseointegration, in particular at compromized bone sites. The aim of the present study is to investigate the surface properties of anodic oxides formed on commercially pure (c.p.) titanium screw implants as well as to study 'native' oxides on turned c.p. titanium implants. Anodic oxides were prepared by galvanostatic mode in CH3COOH up to the high forming voltage of dielectric breakdown and spark formation. The oxide thicknesses, measured with Auger electron spectroscopy (AES), were in the range of about 200-1000 nm. Barrier and porous structures dominated the surface morphology of the anodic film. Quantitative morphometric analyses of the micropore structures were performed using an image analysis system on scanning electron microscopy (SEM) negatives. The pore sizes were
  •  
10.
  • Sul, Young-Taeg, 1960, et al. (författare)
  • Optimum surface properties of oxidized implants for reinforcement of osseointegration: surface chemistry, oxide thickness, porosity, roughness, and crystal structure
  • 2005
  • Ingår i: International Journal of Oral & Maxillofacial Implants. - Chicago, Ill. : Quintessence Pub. Co.. - 0882-2786 .- 1942-4434. ; 20:3, s. 349-59
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE: To investigate detailed surface characterization of oxidized implants in a newly invented electrolyte system and to determine optimal surface oxide properties to enhance the bone response in rabbits. MATERIALS AND METHODS: A total of 100 screw-type titanium implants were prepared and divided into 1 control group (machine-turned implants) and 4 test groups (magnesium ion-incorporated oxidized implants). Forty implants were used for surface analyses. A total of 60 implants, 12 implants from each group, were placed in the tibiae of 10 New Zealand white rabbits and measured with a removal torque test after a healing period of 6 weeks. RESULTS: For the test groups, the oxide thicknesses ranged from about 1,000 to 5,800 nm; for the control group, mean oxide thickness was about 17 nm. The surface morphology showed porous structures for test groups and nonporous barrier film for the control group. Pore diameter ranged from < or = 0.5 microm to < or = 3.0 microm. In regard to surface roughness, arithmetic average height deviation (Sa) values varied from 0.68 to 0.98 microm for test implants and 0.55 microm for control implants; developed surface ratio (Sdr) values ranged from 10.6% to 46% for the test groups and were about 10.6% for the control group. A mixture of anatase and rutile-type crystals were observed in the test groups; amorphous-type crystals were observed in the control group. After a healing period of 6 weeks, removal torque measurements in all 4 test groups demonstrated significantly greater implant integration as compared to machine-turned control implants (P < or = .033). DISCUSSION: Determinant oxide properties of oxidized implants are discussed in association with bone responses. Of all surface properties, RTVs were linearly increased as relative atomic concentrations of magnesium ion increase. CONCLUSIONS: Surface properties of the oxidized implants in the present study, especially surface chemistry, influenced bone responses. The surface chemistry of the optimal oxidized implant should be composed of approximately 9% magnesium at relative atomic concentration in titanium oxide matrix and have an oxide thickness of approximately 1,000 to 5,000 nm, a porosity of about 24%, and a surface roughness of about 0.8 microm in Sa and 27% to 46% in Sdr; its oxide crystal structure should be a mixture of anatase- and rutile-phase crystals.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy