SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "hsv:(TEKNIK OCH TEKNOLOGIER) hsv:(Medicinteknik) hsv:(Medicinsk bildbehandling) ;lar1:(oru)"

Sökning: hsv:(TEKNIK OCH TEKNOLOGIER) hsv:(Medicinteknik) hsv:(Medicinsk bildbehandling) > Örebro universitet

  • Resultat 1-10 av 27
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Khodadad, Davood, 1985-, et al. (författare)
  • Optimized breath detection algorithm in electrical impedance tomography
  • 2018
  • Ingår i: Physiological Measurement. - : IOP Publishing. - 0967-3334 .- 1361-6579. ; 39:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: This paper defines a method for optimizing the breath delineation algorithms used in electrical impedance tomography (EIT). In lung EIT the identification of the breath phases is central for generating tidal impedance variation images, subsequent data analysis and clinical evaluation. The optimisation of these algorithms is particularly important in neonatal care since the existing breath detectors developed for adults may give insufficient reliability in neonates due to their very irregular breathing pattern.Approach: Our approach is generic in the sense that it relies on the definition of a gold standard and the associated definition of detector sensitivity and specificity, an optimisation criterion and a set of detector parameters to be investigated. The gold standard has been defined by 11 clinicians with previous experience with EIT and the performance of our approach is described and validated using a neonatal EIT dataset acquired within the EU-funded CRADL project.Main results: Three different algorithms are proposed that improve the breath detector performance by adding conditions on (1) maximum tidal breath rate obtained from zero-crossings of the EIT breathing signal, (2) minimum tidal impedance amplitude and (3) minimum tidal breath rate obtained from time-frequency analysis. As a baseline a zero-crossing algorithm has been used with some default parameters based on the Swisstom EIT device.Significance: Based on the gold standard, the most crucial parameters of the proposed algorithms are optimised by using a simple exhaustive search and a weighted metric defined in connection with the receiver operating characterics. This provides a practical way to achieve any desirable trade-off between the sensitivity and the specificity of the detectors.
  •  
2.
  • Y Banaem, Hossein, et al. (författare)
  • Brain tumor modeling : glioma growth and interaction with chemotherapy
  • 2011
  • Ingår i: International Conference on Graphic and Image Processing (ICGIP 2011). - : SPIE. ; 8285
  • Konferensbidrag (refereegranskat)abstract
    • In last decade increasingly mathematical models of tumor growths have been studied, particularly on solid tumors which growth mainly caused by cellular proliferation. In this paper we propose a modified model to simulate the growth of gliomas in different stages. Glioma growth is modeled by a reaction-advection-diffusion. We begin with a model of untreated gliomas and continue with models of polyclonal glioma following chemotherapy. From relatively simple assumptions involving homogeneous brain tissue bounded by a few gross anatomical landmarks (ventricles and skull) the models have been expanded to include heterogeneous brain tissue with different motilities of glioma cells in grey and white matter. Tumor growth is characterized by a dangerous change in the control mechanisms, which normally maintain a balance between the rate of proliferation and the rate of apoptosis (controlled cell death). Result shows that this model closes to clinical finding and can simulate brain tumor behavior properly.
  •  
3.
  • Yousefi, Hossein, et al. (författare)
  • An optimised linear mechanical model for estimating brain shift caused by meningioma tumours
  • 2013
  • Ingår i: International Journal of Biomedical Science and Engineering. - : Science Publishing Group. - 2376-7227 .- 2376-7235. ; 1:1, s. 1-9
  • Tidskriftsartikel (refereegranskat)abstract
    • Estimation of brain deformation plays an important role in computer-aided therapy and image-guided neurosurgery systems. Tumour growth can cause brain deformation and change stress distribution in the brain. Biomechanical models exist that use a finite element method to estimate brain shift caused by tumour growth. Such models can be categorised as linear and non-linear models, both of which assume finite deformation of the brain after tumour growth. Linear models are easy to implement and fast enough to for applications such as IGS where the time is a great of concern. However their accuracy highly dependent on the parameters of the models in this paper, we proposed an optimisation approach to improve a naive linear model to achieve more precise estimation of brain displacements caused by tumour growth. The optimisation process has improved the accuracy of the model by adapting the brain model parameters according to different tomour sizes.We used patient-based tetrahedron finite element mesh with proper material properties for brain tissue and appropriate boundary conditions in the tumour region. Anatomical landmarks were determined by an expert and were divided into two different sets for evaluation and optimisation. Tetrahedral finite element meshes were used and the model parameters were optimised by minimising the mean square distance between the predicted locations of the anatomical landmarks derived from Brain Atlas images and their actual locations on the tumour images. Our results demonstrate great improvement in the accuracy of an optimised linear mechanical model that achieved an accuracy rate of approximately 92%.
  •  
4.
  • Khodadad, Davood, 1985-, et al. (författare)
  • The Value of Phase Angle in Electrical Impedance Tomography Breath Detection
  • 2018
  • Ingår i: 2018 Progress in Electromagnetics Research Symposium (PIERS-Toyama). - : Electromagnetics Academy. - 9784885523168 - 9781538654552 ; , s. 1040-1043
  • Konferensbidrag (refereegranskat)abstract
    • The objective of this paper is to report our investigation demonstrating that the phase angle information of complex impedance could be a simple indicator of a breath cycle in chest Electrical Impedance Tomography (EIT). The study used clinical neonatal EIT data. The results show that measurement of the phase angle from complex EIT data can be used as a complementary information for improving the conventional breath detection algorithms.
  •  
5.
  • Ahlander, Britt-Marie, 1954-, et al. (författare)
  • An echo-planar imaging sequence is superior to a steady-state free precession sequence for visual as well as quantitative assessment of cardiac magnetic resonance stress perfusion
  • 2017
  • Ingår i: Clinical Physiology and Functional Imaging. - : Blackwell Publishing. - 1475-0961 .- 1475-097X. ; 37:1, s. 52-61
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: To assess myocardial perfusion, steady-state free precession cardiac magnetic resonance (SSFP, CMR) was compared with gradient-echo-echo-planar imaging (GRE-EPI) using myocardial perfusion scintigraphy (MPS) as reference.METHODS: Cardiac magnetic resonance perfusion was recorded in 30 patients with SSFP and in another 30 patients with GRE-EPI. Timing and extent of inflow delay to the myocardium was visually assessed. Signal-to-noise (SNR) and contrast-to-noise (CNR) ratios were calculated. Myocardial scar was visualized with a phase-sensitive inversion recovery sequence (PSIR). All scar positive segments were considered pathologic. In MPS, stress and rest images were used as in clinical reporting. The CMR contrast wash-in slope was calculated and compared with the stress score from the MPS examination. CMR scar, CMR perfusion and MPS were assessed separately by one expert for each method who was blinded to other aspects of the study.RESULTS: Visual assessment of CMR had a sensitivity for the detection of an abnormal MPS at 78% (SSFP) versus 91% (GRE-EPI) and a specificity of 58% (SSFP) versus 84% (GRE-EPI). Kappa statistics for SSFP and MPS was 0·29, for GRE-EPI and MPS 0·72. The ANOVA of CMR perfusion slopes for all segments versus MPS score (four levels based on MPS) had correlation r = 0·64 (SSFP) and r = 0·96 (GRE-EPI). SNR was for normal segments 35·63 ± 11·80 (SSFP) and 17·98 ± 8·31 (GRE-EPI), while CNR was 28·79 ± 10·43 (SSFP) and 13·06 ± 7·61 (GRE-EPI).CONCLUSION: GRE-EPI displayed higher agreement with the MPS results than SSFP despite significantly lower signal intensity, SNR and CNR.
  •  
6.
  • Ahlander, Britt-Marie, 1954- (författare)
  • Magnetic Resonance Imaging of the Heart : Image quality, measurement accuracy and patient experience
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Background: Non-invasive diagnostic imaging of atherosclerotic coronary artery disease (CAD) is frequently carried out with cardiovascular magnetic resonance imaging (CMR) or myocardial perfusion single photon emission computed tomography (MPS). CMR is the gold standard for the evaluation of scar after myocardial infarction and MPS the clinical gold standard for ischemia. Magnetic Resonance Imaging (MRI) is at times difficult for patients and may induce anxiety while patient experience of MPS is largely unknown.Aims: To evaluate image quality in CMR with respect to the sequences employed, the influence of atrial fibrillation, myocardial perfusion and the impact of patient information. Further, to study patient experience in relation to MRI with the goal of improving the care of these patients.Method: Four study designs have been used. In paper I, experimental cross-over, paper (II) experimental controlled clinical trial, paper (III) psychometric crosssectional study and paper (IV) prospective intervention study. A total of 475 patients ≥ 18 years with primarily cardiac problems (I-IV) except for those referred for MRI of the spine (III) were included in the four studies.Result: In patients (n=20) with atrial fibrillation, a single shot steady state free precession (SS-SSFP) sequence showed significantly better image quality than the standard segmented inversion recovery fast gradient echo (IR-FGRE) sequence (I). In first-pass perfusion imaging the gradient echo-echo planar imaging sequence (GREEPI) (n=30) had lower signal-to-noise and contrast–to-noise ratios than the steady state free precession sequence (SSFP) (n=30) but displayed a higher correlation with the MPS results, evaluated both qualitatively and quantitatively (II). The MRIAnxiety Questionnaire (MRI-AQ) was validated on patients, referred for MRI of either the spine (n=193) or the heart (n=54). The final instrument had 15 items divided in two factors regarding Anxiety and Relaxation. The instrument was found to have satisfactory psychometric properties (III). Patients who prior CMR viewed an information video scored significantly (lower) better in the factor Relaxation, than those who received standard information. Patients who underwent MPS scored lower on both factors, Anxiety and Relaxation. The extra video information had no effect on CMR image quality (IV).Conclusion: Single shot imaging in atrial fibrillation produced images with less artefact than a segmented sequence. In first-pass perfusion imaging, the sequence GRE-EPI was superior to SSFP. A questionnaire depicting anxiety during MRI showed that video information prior to imaging helped patients relax but did not result in an improvement in image quality.
  •  
7.
  • Nordebo, Sven, 1963-, et al. (författare)
  • A parametric model for the changes in the complex valued conductivity of a lung during tidal breathing
  • 2018
  • Ingår i: Journal of Physics D. - : IOP Publishing. - 0022-3727 .- 1361-6463. ; 51:20
  • Tidskriftsartikel (refereegranskat)abstract
    • Classical homogenization theory based on the Hashin-Shtrikman coated ellipsoids is used to model the changes in the complex valued conductivity (or admittivity) of a lung during tidal breathing. Here, the lung is modeled as a two-phase composite material where the alveolar air-filling corresponds to the inclusion phase. The theory predicts a linear relationship between the real and the imaginary parts of the change in the complex valued conductivity of a lung during tidal breathing, and where the loss cotangent of the change is approximately the same as of the effective background conductivity and hence easy to estimate. The theory is illustrated with numerical examples based on realistic parameter values and frequency ranges used with electrical impedance tomography (EIT). The theory may be potentially useful for imaging and clinical evaluations in connection with lung EIT for respiratory management and control.
  •  
8.
  • Alshamari, Muhammed, 1975-, et al. (författare)
  • Impact of iterative reconstruction on image quality of low-dose CT of the lumbar spine
  • 2017
  • Ingår i: Acta Radiologica. - London : Sage Publications. - 0284-1851 .- 1600-0455. ; 58:6, s. 702-709
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Iterative reconstruction (IR) is a recent reconstruction algorithm for computed tomography (CT) that can be used instead of the standard algorithm, filtered back projection (FBP), to reduce radiation dose and/or improve image quality.Purpose: To evaluate and compare the image quality of low-dose CT of the lumbar spine reconstructed with IR to conventional FBP, without further reduction of radiation dose.Material and Methods: Low-dose CT on 55 patients was performed on a Siemens scanner using 120 kV tube voltage, 30 reference mAs, and automatic dose modulation. From raw CT data, lumbar spine CT images were reconstructed with a medium filter (B41f) using FBP and four levels of IR (levels 2-5). Five reviewers scored all images on seven image quality criteria according to the European guidelines on quality criteria for CT, using a five-grade scale. A side-by-side comparison was also performed.Results: There was significant improvement in image quality for IR (levels 2-4) compared to FBP. According to visual grading regression, odds ratios of all criteria with 95% confidence intervals for IR2, IR3, IR4, and IR5 were: 1.59 (1.39-1.83), 1.74 (1.51-1.99), 1.68 (1.46-1.93), and 1.08 (0.94-1.23), respectively. In the side-by-side comparison of all reconstructions, images with IR (levels 2-4) received the highest scores. The mean overall CTDIvol was 1.70 mGy (SD 0.46; range, 1.01-3.83 mGy). Image noise decreased in a linear fashion with increased strength of IR.Conclusion: Iterative reconstruction at levels 2, 3, and 4 improves image quality of low-dose CT of the lumbar spine compared to FPB.
  •  
9.
  • Andersén, Christoffer, 1991-, et al. (författare)
  • Presults for the aI-Brachy study : Utilizing deep learning for needle reconstruction in prostate brachytherapy
  • 2019
  • Konferensbidrag (refereegranskat)abstract
    • Purpose To develop a deep neural network for automatic reconstruction of needles in ultrasound images depicting the prostate during brachytherapy treatment of prostate cancer.Methods Ultrasound tomographies of the prostate from 907 treatments were used to train the artificial intelligent (AI) algorithm. The image matrices were downsampled to 128x128x128 and were used as in-data when training the AI, a 27 layer convolutional neural network. The needles were identified manually by medical physicists using conventional software. These reconstructions were used as gold standard when training the algorithm. An additional set of examinations were used for validation where the needle reconstructions by the AI were compared to the manual reconstructions. The root mean square deviation (RMSD) of needle position, including the central part (70 slices) of the needle was measured in order to avoid influence from artefacts around the needle tip. The result was also evaluated through visual inspection (see image). The times spent for manual vs. AI reconstruction were compared.Results RMSD for manual vs. AI reconstruction is on average (n=170) 1.18±1.0mm, whereas the difference between two manual operators is 0.02±0.06mm, which suggests that the AI is inferior to manual operators. The visual inspection, however, shows AI to be very accurate in positioning the needles. Manual reconstruction took approximately 11.0 minutes, whereas the time for the trained AI is negligible in comparison. Worth noticing regarding RMSD calculations is that, due to limited image resolution, small values may be under-estimated, hence overestimating the difference between the reconstruction methods.Conclusions The study implies that an AI may reconstruct needles for brachytherapy treatments of prostate cancer. The larger deviations between AI algorithm and manual operators, compared to between human operators appears to disagree with the high accuracy of the visual evaluation. However, visually, manual needle reconstructions appear to deviate more from the ultrasound image than do the AI reconstructions. This discrepancy is mainly caused by manual reconstruction software assuming straight needles, unlike the AI. We conclude that AI gives the opportunity to save a substantial amount of treatment planning time, when the patient is anesthetised. Further studies are needed to determine whether different reconstruction methods impact treatment plans.
  •  
10.
  • Bergström, Per, et al. (författare)
  • Single shot shape evaluation using dual-wavelength holographic reconstructions and regularization
  • 2014
  • Ingår i: Fringe 2013. - Berlin : Encyclopedia of Global Archaeology/Springer Verlag. - 9783642363580 - 9783642363597 ; , s. 103-108
  • Konferensbidrag (refereegranskat)abstract
    • The aim of this work is to evaluate the shape of a free form object using single shot digital holography. The digital holography results in a gradient field and wrapped phase maps representing the shape of the object. The task is then to find a surface representation from this data which is an inverse problem. To solve this inverse problem we are using regularization with additional shape information from the CAD-model of the measured object.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 27
Typ av publikation
tidskriftsartikel (15)
konferensbidrag (11)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (26)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Lidén, Mats, 1976- (4)
Sjödahl, Mikael (3)
Thunberg, Per, 1968- (3)
Geijer, Håkan, 1961- (2)
Ahlander, Britt-Mari ... (2)
Johansson, Carina B. ... (2)
visa fler...
Lindblad, Joakim (2)
Jendeberg, Johan, 19 ... (2)
Rönnow, Daniel (1)
Gagliardi, G. (1)
Magnuson, Anders (1)
Karlsson, Magnus (1)
Johansson, K (1)
Brudin, Lars (1)
Olsson, Caroline, 19 ... (1)
Geijer, Mats, 1957 (1)
Rydén, Tobias (1)
Söderström, Karin (1)
Zackrisson, Björn (1)
Nyholm, Tufve (1)
Reizenstein, J. (1)
Nilsson, Per (1)
Nyholm, Dag (1)
Memedi, Mevludin (1)
Agrup, Måns (1)
Wallin, Göran, 1952- (1)
Maret, Eva (1)
Starck, Sven-Ake (1)
Engvall, Jan (1)
Engvall, Jan, Profes ... (1)
Ericsson, Elisabeth, ... (1)
Maret, Eva, Med. Dr. (1)
Carlsson, Marcus, Do ... (1)
Dalarsson, Mariana (1)
Nystrom, L (1)
Montelius, Anders (1)
Gustafsson, A (1)
Alshamari, Muhammed, ... (1)
Sjöberg, Daniel (1)
Gimm, Oliver (1)
Javed, Farrukh, 1984 ... (1)
Borgefors, Gunilla (1)
Fagerström Kristense ... (1)
Woisetschläger, Misc ... (1)
Norrman, Eva, 1966- (1)
Krauss, Wolfgang, 19 ... (1)
Broxvall, Mathias, 1 ... (1)
Zaidi, Habib (1)
Andersén, Christoffe ... (1)
Heydorn Lagerlöf, Ja ... (1)
visa färre...
Lärosäte
Linnéuniversitetet (14)
Luleå tekniska universitet (8)
Umeå universitet (6)
Uppsala universitet (5)
Linköpings universitet (5)
visa fler...
Lunds universitet (3)
Karolinska Institutet (2)
Sveriges Lantbruksuniversitet (2)
Göteborgs universitet (1)
Kungliga Tekniska Högskolan (1)
Högskolan i Gävle (1)
Jönköping University (1)
Högskolan Dalarna (1)
Blekinge Tekniska Högskola (1)
visa färre...
Språk
Engelska (27)
Forskningsämne (UKÄ/SCB)
Teknik (27)
Medicin och hälsovetenskap (15)
Naturvetenskap (12)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy