SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "hsv:(TEKNIK OCH TEKNOLOGIER) hsv:(Medicinteknik) hsv:(Medicinsk bildbehandling) ;pers:(West Janne)"

Sökning: hsv:(TEKNIK OCH TEKNOLOGIER) hsv:(Medicinteknik) hsv:(Medicinsk bildbehandling) > West Janne

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Borga, Magnus, 1965-, et al. (författare)
  • Advanced body composition assessment: From body mass index to body composition profiling
  • 2018
  • Ingår i: Journal of Investigative Medicine. - : BMJ Publishing Group Ltd. - 1081-5589 .- 1708-8267. ; 66:5, s. 887-895
  • Forskningsöversikt (refereegranskat)abstract
    • This paper gives a brief overview of common non-invasive techniques for body composition analysis and a more in-depth review of a body composition assessment method based on fat-referenced quantitative magnetic resonance imaging (MRI). Earlier published studies of this method are summarized, and a previously un-published validation study, based on 4.753 subjects from the UK Biobank imaging cohort, comparing the quantitative MRI method with dual-energy x-ray absorptiometry (DXA) is presented. For whole-body measurements of adipose tissue (AT) or fat and lean tissue (LT), DXA and quantitative MRI show excellent agreement with linear correlation of 0.99 and 0.97, and coefficient of variation (CV) of 4.5 % and 4.6 % for fat (computed from AT) and lean tissue respectively, but the agreement was found significantly lower for visceral adipose tissue, with a CV of more than 20 %. The additional ability of MRI to also measure muscle volumes, muscle AT infiltration and ectopic fat in combination with rapid scanning protocols and efficient image analysis tools make quantitative MRI a powerful tool for advanced body composition assessment. 
  •  
2.
  • Dahlqvist Leinhard, Olof, 1978-, et al. (författare)
  • Body Composition Profiling using MRI - Normative Data for Subjects with Cardiovascular Disease Extracted from the UK Biobank Imaging Cohort
  • 2016
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • PURPOSETo describe the distribution of MRI-derived body composition measurements in subjects with cardiovascular disease (CVD) compared to subjects without any history of CVD.METHOD AND MATERIALS1864 males and 2036 females with an age range from 45 to 78 years from the UK Biobank imaging study were included in the study. Visceral adipose tissue volume normalized with height2 (VATi), total abdominal adipose tissue volume normalized with height2 (ATATi), total lean thigh muscle volume normalized with body weight (muscle ratio) and liver proton density fat fraction (PDFF) were measured with a 2-point Dixon imaging protocol covering neck to knee and a 10-point Dixon single slice protocol positioned within the liver using a 1.5T MR-scanner (Siemens, Germany). The MR-images were analyzed using AMRA® Profiler research (AMRA, Sweden). 213 subjects with history of cardiovascular events (angina, heart attack, or stroke) (event group) were age and gender matched to subjects with high blood pressure (HBP group), and subjects without CVD (controls).Kruskal-Wallis and Mann-Whitney U tests were used to test the observed differences for each measurement and group without correction for multiple comparisons.RESULTSVATi in the event group was 1.73 (1.13 - 2.32) l/m2 (median, 25%-75% percentile) compared to 1.68 (1.19 - 2.23) in the HBP group, and 1.30 (0.82-1.87) in the controls. ATATi in the event group was 4.31 (2.90-5.39) l/m2 compared to 4.05 (3.07-5.12) in the HBP group, and 3.48 (2.48-4.61) in the controls. Muscle ratio in the event group was 0.13 (0.12 - 0.15) l/kg as well as in the HBP group, compared to 0.14 (0.12 - 0.15) in the controls. Liver PDFF in the event group was 2.88 (1.77 - 7.72) % compared to 3.44 (2.04-6.18) in the HBP group, and 2.50 (1.58 - 5.15) in the controls. Kruskal-Wallis test showed significant differences for all variables and group comparisons (p<0.007). The post hoc test showed significant differences comparing the controls to both the event group and the HBP group. These were more significant for VATi and ATATi (p<10-4) than for muscle ratio and PDFF (p<0.03). No significant differences were detected between the event group and the HBP group.CONCLUSIONCardiovascular disease is strongly associated with high VATi, liver fat, and ATATi, and with low muscle ratio.CLINICAL RELEVANCE/APPLICATIONThe metabolic syndrome component in CVD can be effectively described using MRI-based body composition profiling.
  •  
3.
  • Dahlqvist Leinhard, Olof, 1978-, et al. (författare)
  • Body Composition Profiling using MRI - Normative Data for Subjects with Diabetes Extracted from the UK Biobank Imaging Cohort
  • 2016
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • PURPOSETo describe the distribution of MRI derived body composition measurements in subjects with diabetes mellitus (DM) compared to subjects without diabetes.METHOD AND MATERIALS3900 subjects (1864 males and 2036 females) from the UK Biobank imaging study were included in the study. The age range was 45 to 78 years. Visceral adipose tissue volume normalized with height2 (VATi), total abdominal adipose tissue volume normalized with height2 (ATATi), total lean thigh muscle volume normalized with body weight (muscle ratio) and liver proton density fat fraction (PDFF) were measured with a 6 minutes 2-point Dixon imaging protocol covering neck to knee and a 10-point Dixon single axial slice protocol positioned within the liver using a 1.5T MR-scanner (Siemens, Germany). The MR-images were analyzed using AMRA® Profiler research (AMRA, Sweden). 194 subjects with clinically diagnosed DM (DM group) were age and gender matched to subjects without DM (control group). For each variable and group, the median, 25%-percentile and 75%-percentile was calculated. Mann-Whitney U test was used to test the observed differences.RESULTSVATi in the DM group was 2.13 (1.43-2.62) l/m2 (median, 25% - 75% percentile) compared to 1.32 (0.86 - 1.79) l/m2 in the control group. ATATi in the DM group was 4.94 (3.86-6.19) l/m2 compared to 3.40 (2.56 - 4.70) l/m2 in the control group. Muscle ratio in the DM group was 0.13 (0.11 - 0.14) l/kg compared to 0.14 (0.12 - 0.15) l/kg in the control group. Liver PDFF in the DM group was 7.23 (2.68 - 13.26) % compared to 2.49 (1.53 - 4.73) % in the control group. Mann-Whitney U test detected significant differences between the DM group and the control group for all variables (p<10-5).CONCLUSIONDM is strongly associated with high visceral fat, liver fat, and total abdominal fat, and low muscle ratio.CLINICAL RELEVANCE/APPLICATIONBody composition profiling shows high potential to provide direct biomarkers to improve characterization and early diagnosis of DM.
  •  
4.
  • Karlsson, Anette, et al. (författare)
  • Defining Sarcopenia with MRI - Establishing Threshold Values within a Large-Scale Population Study
  • 2016
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • PURPOSETo identify gender specific threshold values for sarcopenia detection for lean thigh muscle tissue volume quantified using MRI.METHOD AND MATERIALSCurrent gender-specific thresholds for sarcopenia detection are based on quantification on appendicular lean tissue normalized with height^2 using DXA (7.26 kg/m2 for men and 5.45 kg/m2 for women). In this study 3514 subjects (1548 males and 1966 females) in the imaging subcohort of UK Biobank with paired DXA and MRI scans were included. The age range was 45 to 78 years. The total lean thigh volume normalized with height2 (TTVi) was determined with a 6 minutes neck to knee 2-point Dixon MRI protocol using a 1.5T MR-scanner (Siemens, Germany) followed by analysis with AMRA® Profiler (AMRA, Sweden). The appendicular lean tissue mass normalized with height2 (ALTMi) was assessed using DXA (GE-Lunar iDXA). Subjects with ALTMi lower than the gender specific threshold were categorized as sarcopenic. Gender specific threshold values were determined for detection of sarcopenic subjects based on TTVi optimizing sensitivity and specificity. Area under receiver operator curve (AUROC) was calculated as well as the linear correlation between TTVi and ALTMi.RESULTSA threshold value of TTVi = 3.64 l/m2 provided a sensitivity and specificity of 0.88 for sarcopenia detection in males. The AUROC was 0.96. Similarly, a TTVi < 2.76 l/m2 identified sarcopenic female subjects with a sensitivity and specificity of 0.89. The corresponding AUROC was 0.96. The linear correlation between TTVi and ALTMi was 0.93 (99%CI: 0.93-0.94).CONCLUSIONMRI-based quantification of total lean thigh volume normalized with height^2 could be used to categorize sarcopenia in the study group. Threshold values are suggested.CLINICAL RELEVANCE/APPLICATIONThe study suggests that sarcopenia can be diagnosed using a rapid MRI scan with high sensitivity and specificity.
  •  
5.
  • Karlsson, Anette, 1986-, et al. (författare)
  • The effect on precision and T1 bias comparing two flip angles when estimating muscle fat infiltration using fat-referenced chemical shift-encoded imaging
  • 2021
  • Ingår i: NMR in Biomedicine. - : John Wiley & Sons. - 0952-3480 .- 1099-1492. ; 34:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Investigation of the effect on accuracy and precision of different parameter settings is important for quantitative Magnetic Resonance Imaging. The purpose of this study was to investigate T1-bias and precision for muscle fat infiltration (MFI) using fat-referenced chemical shift magnetic resonance imaging at 5° and 10° flip angle. This [MB1] experimental study was done on forty postmenopausal women using 3T MRI test and retest images using 4-point 3D spoiled gradient multi-echo acquisition including real and imaginary images for reconstruction acquired at Flip angles 5° and 10°. Post-processing included T2* correction and fat-referenced calibration of the fat signal. The mean MFI was calculated in six different automatically segmented muscle regions using both the fat-referenced fat signal and the fat fraction calculated from the fat and water image pair for each acquisition. The variance of the difference between mean MFI from test and retest was used as measure of precision. The SNR characteristics were analyzed by measuring difference of the full width half maximum of the fat signal distribution using Student’s t-test.There was no difference in the mean fat-referenced MFI at different flip angles with the fat-referenced technique, which was the case using the fat fraction. No significant difference in the precision was found in any of the muscles analyzed. However, the full width half maximum of the fat signal distribution was significantly lower at 10° flip angle compared to 5°. Fat-referenced MFI is insensitive to T1 bias in chemical shift magnetic resonance imaging enabling usage of a higher and more SNR effective flip angle. The lower full-width-at half-maximum in fat-referenced MFI at 10° indicates that high flip angle acquisition is advantageous although no significant differences in precision was observed comparing 5° and 10°.
  •  
6.
  •  
7.
  •  
8.
  • Romu, Thobias, et al. (författare)
  • The effect of flip-angle on body composition using calibrated water-fat MRI.
  • 2016
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • This study tested how the flip angle affects body composition analysis by MRI, if adipose tissue is used as an internal intensity reference. Whole-body water-fat images with flip angle 5° and 10° were collected from 29 women in an ongoing study. The images were calibrated based on the adipose tissue signal and whole-body total adipose, lean and soft tissue volumes were measured. A mean difference of 0.29 L, or 0.90 % of the average volume, and a coefficient of variation of 0.40 % was observed for adipose tissue.
  •  
9.
  • West, Janne, et al. (författare)
  • Automatic combined whole-body muscle and fat volume quantification using water-fat separated MRI in postmenopausal women
  • 2015
  • Ingår i: International Society for Magnetic Resonance in Medicine Annual Meeting.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Quantitative and exact measurements of fat and muscle in the body are important when addressing some of the greatest health-challenges today. In this study whole-body combined regional muscle and fat volume quantification was validated in a group of postmenopausal women, where the body composition is changing. Twelve subjects were scanned with a 4-echo 3D gradient-echo sequence. Water and fat image volumes were calculated using IDEAL, and image intensity correction was performed. Subsequently, automatic tissue segmentation was established using non-rigid morphon based registration. Whole-body regional fat and muscle segmentation could be performed with excellent test-retest reliability, in a single 7-minutes MR-scan.
  •  
10.
  • West, Janne, et al. (författare)
  • Body Composition Analysis Combined with Individual Muscle Measurements using Dixon-MRI
  • 2017
  • Konferensbidrag (refereegranskat)abstract
    • Body composition analysis is increasingly important for diagnosis and follow-up in many patient groups and medical conditions. The combined fat and muscle quantification on global and regional level is not commonly reported. In this study a Dixon-MRI based acquisition and body composition analysis was extended to quantify individual muscles. Test-retest reliability was established in a clinically relevant group of 36 postmenopausal women. This method enables advanced phenotyping combined with measurements of specific muscles to target clinical questions. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy