SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "hsv:(TEKNIK OCH TEKNOLOGIER) hsv:(Medicinteknik) hsv:(Medicinsk laboratorie och mätteknik) ;pers:(Åslund Magnus)"

Sökning: hsv:(TEKNIK OCH TEKNOLOGIER) hsv:(Medicinteknik) hsv:(Medicinsk laboratorie och mätteknik) > Åslund Magnus

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fredenberg, Erik, PhD, 1979-, et al. (författare)
  • A Tunable Energy Filter for Medical X-Ray Imaging
  • 2008
  • Ingår i: X-Ray Optics and Instrumentation. - : Hindawi. - 1687-7632 .- 1687-7640. ; 2008
  • Tidskriftsartikel (refereegranskat)abstract
    • A multiprism lens (MPL) is a refractive X-ray lens, and its chromatic properties can be employed in an energy filtering setup to obtain a narrow tunable X-ray spectrum. We present the first evaluation of such a filter for medical X-ray imaging. The experimental setup yields a 6.6 gain of flux at 20 keV, and we demonstrate tunability by altering the energy spectrum to center also around 17 and 23 keV. All measurements are found to agree well with ray-tracing and a proposed geometrical model. Compared to a model mammography system with absorption filtering, the experimental MPL filter reduces dose 13–25% for 3–7 cm breasts if the spectrum is centered around the optimal energy. Additionally, the resolution is improved 2.5 times for a 5 cm breast. The scan time is increased 3 times but can be reduced with a slightly decreased energy filtering and resolution.
  •  
2.
  • Fredenberg, Erik, 1979-, et al. (författare)
  • An efficient pre-object collimator based on an x-ray lens
  • 2009
  • Ingår i: Medical physics (Lancaster). - : Wiley. - 0094-2405. ; 36:2, s. 626-633
  • Tidskriftsartikel (refereegranskat)abstract
    • A multiprism lens (MPL) is a refractive x-ray lens with one-dimensional focusing properties. If used as a pre-object collimator in a scanning system for medical x-ray imaging, it reduces the divergence of the radiation and improves on photon economy compared to a slit collimator. Potential advantages include shorter acquisition times, a reduced tube loading, or improved resolution. We present the first images acquired with a MPL in a prototype for a scanning mammography system. The lens showed a gain of flux of 1.32 compared to a slit collimator at equal resolution, or a gain in resolution of 1.31–1.44 at equal flux. We expect the gain of flux in a clinical setup with an optimized MPL and a custom-made absorption filter to reach 1.67, or 1.45–1.54 gain in resolution.
  •  
3.
  • Fredenberg, Erik, PhD, 1979-, et al. (författare)
  • Contrast-enhanced spectral mammography with a photon-counting detector
  • 2010
  • Ingår i: Medical physics (Lancaster). - : Wiley. - 0094-2405. ; 37:5, s. 2017-2029
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: Spectral imaging is a method in medical x-ray imaging to extract information about the object constituents by the material-specific energy dependence of x-ray attenuation. In particular, the detectability of a contrast agent can be improved over a lumpy background. We have investigated a photon-counting spectral imaging system with two energy bins for contrast-enhanced mammography. System optimization and the potential benefit compared to conventional non-energy-resolved imaging was studied.Methods: A framework for system characterization was set up that included quantum and anatomical noise, and a theoretical model of the system was benchmarked to phantom measurements.Results: It was found that optimal combination of the energy-resolved images corresponded approximately to minimization of the anatomical noise, and an ideal-observer detectability index could be improved more than a factor of two compared to absorption imaging in the phantom study. In the clinical case, an improvement close to 80% was predicted for an average glandularity breast, and a factor of eight for dense breast tissue. Another 70% was found to be within reach for an optimized system.Conclusions: Contrast-enhanced spectral mammography is feasible and beneficial with the current system, and there is room for additional improvements.
  •  
4.
  • Fredenberg, Erik, PhD, 1979-, et al. (författare)
  • Observer model optimization of a spectral mammography system
  • 2010
  • Ingår i: Medical Imaging 2010. - : SPIE. - 9780819480231
  • Konferensbidrag (refereegranskat)abstract
    • Spectral imaging is a method in medical x-ray imaging to extract information about the object constituents by the material-specific energy dependence of x-ray attenuation. Contrast-enhanced spectral imaging has been thoroughly investigated, but unenhanced imaging may be more useful because it comes as a bonus to the conventional non-energy-resolved absorption image at screening; there is no additional radiation dose and no need for contrast medium. We have used a previously developed theoretical framework and system model that include quantum and anatomical noise to characterize the performance of a photon-counting spectral mammography system with two energy bins for unenhanced imaging. The theoretical framework was validated with synthesized images. Optimal combination of the energy-resolved images for detecting large unenhanced tumors corresponded closely, but not exactly, to minimization of the anatomical noise, which is commonly referred to as energy subtraction. In that case, an ideal-observer detectability index could be improved close to 50% compared to absorption imaging. Optimization with respect to the signal-to-quantum-noise ratio, commonly referred to as energy weighting, deteriorated detectability. For small microcalcifications or tumors on uniform backgrounds, however, energy subtraction was suboptimal whereas energy weighting provided a minute improvement. The performance was largely independent of beam quality, detector energy resolution, and bin count fraction. It is clear that inclusion of anatomical noise and imaging task in spectral optimization may yield completely different results than an analysis based solely on quantum noise.
  •  
5.
  • Åslund, Magnus, et al. (författare)
  • AEC for scanning digital mammography based on variation of scan velocity
  • 2005
  • Ingår i: Medical physics (Lancaster). - : Wiley. - 0094-2405. ; 32:11, s. 3367-3374
  • Tidskriftsartikel (refereegranskat)abstract
    • A theoretical evaluation of nonuniform x-ray field distributions in mammography was conducted. An automatic exposure control (AEC) is proposed for a scanning full field digital mammography system. It uses information from the leading part of the detector to vary the scan velocity dynamically, thus creating a nonuniform x-ray field in the scan direction. Nonuniform radiation fields were also created by numerically optimizing the scan velocity profile to each breast's transmission distribution, with constraints on velocity and acceleration. The goal of the proposed AEC is to produce constant pixel signal-to-noise ratio throughout the image. The target pixel SNR for each image could be set based on the breast thickness, breast composition, and the beam quality as to achieve the same contrast-to-noise ratio between images for structures of interest. The results are quantified in terms of reduction in entrance surface air kerma (ESAK) and scan time relative to a uniform x-ray field. The theoretical evaluation was performed on a set of 266 mammograms. The performance of the different methods to create nonuniform fields decreased with increased detector width, from 18% to 11% in terms of ESAK reduction and from 30% to 25% in terms of scan time reduction for the proposed AEC and detector widths from 10 to 60 mm. Some correlation was found between compressed breast thickness and the projected breast area onto the image field. This translated into an increase of the ESAK and decrease of the scan time reduction with breast thickness. Ideally a nonuniform field in two dimensions could reduce the entrance dose by 39% on average, whereas a field nonuniform in only the scanning dimension ideally yields a 20% reduction. A benefit with the proposed AEC is that the risk of underexposing the densest region of the breast can be virtually eliminated.
  •  
6.
  •  
7.
  • Åslund, Magnus, et al. (författare)
  • Physical characterization of a scanning photon counting digital mammography system based on Si-strip detectors
  • 2007
  • Ingår i: Medical physics (Lancaster). - : Wiley. - 0094-2405. ; 34:6, s. 1918-1925
  • Tidskriftsartikel (refereegranskat)abstract
    • The physical performance of a scanning multislit full field digital mammography system was determined using basic image quality parameters. The system employs a direct detection detector comprised of linear silicon strip sensors in an edge-on geometry connected to photon counting electronics. The pixel size is 50 mu m and the field of view 24 x 26 cm(2). The performance was quantified using the presampled modulation transfer function, the normalized noise power spectrum and the detective quantum efficiency (DQE). Compared to conventional DQE methods, the scanning geometry with its intrinsic scatter rejection poses additional requirements on the measurement setup, which are investigated in this work. The DQE of the photon counting system was found to be independent of the dose level to the detector in the 7.6-206 mu Gy range. The peak DQE was 72% and 73% in the scan and slit direction, respectively, measured with a 28 kV W-0.5 mm Al anodefilter combination with an added 2 mm Al filtration.
  •  
8.
  • Åslund, Magnus, et al. (författare)
  • Scatter rejection in multislit digital mammography
  • 2006
  • Ingår i: Medical physics (Lancaster). - : Wiley. - 0094-2405. ; 33:4, s. 933-940
  • Tidskriftsartikel (refereegranskat)abstract
    • The scatter to primary ratio (SPR) was measured on a scanning multislit full-field digital mammography system for different thickness of breast equivalent material and different tube voltages. Scatter within the detector was measured separately and was found to be the major source of scatter in the assembly. Measured total SPRs below 6% are reported for breast range 3-7 cm. The performance of the multislit assembly is compared to other imaging geometries with different scatter rejection schemes by using the scatter detective quantum efficiency.
  •  
9.
  • Åslund, Magnus, et al. (författare)
  • Spectral shaping for photon counting digital mammography
  • 2007
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 580:2, s. 1046-1049
  • Tidskriftsartikel (refereegranskat)abstract
    • The spectral shaping properties of conventional filters have been evaluated for a photon counting digital mammography system, and the result has been compared with the theoretical spectrum from a multi-prism X-ray lens (MPL). The absorption filters and the MPL were evaluated using a theoretical model of the system which has been verified experimentally. The spectral shaping performance is quantified with the spectral quantum efficiency (SQE), calculated as the polychromatic signal-difference-to-noise ratio (SDNR) squared over the optimal monochromatic SDNR squared at the same average glandular dose. The MPL increases the SQE by 25% compared to the investigated absorption filter when compared with a Tungsten anode. This translates into a potential dose reduction of 20% at maintained SDNR.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy