SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "hsv:(TEKNIK OCH TEKNOLOGIER) hsv:(Medicinteknik) hsv:(Medicinsk laboratorie och mätteknik) ;pers:(Larsson Matilda)"

Sökning: hsv:(TEKNIK OCH TEKNOLOGIER) hsv:(Medicinteknik) hsv:(Medicinsk laboratorie och mätteknik) > Larsson Matilda

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fröberg, Asa, et al. (författare)
  • High variability in strain estimation errors when using a commercial ultrasound speckle tracking algorithm on tendon tissue
  • 2016
  • Ingår i: Acta Radiologica. - : Sage Publications. - 0284-1851 .- 1600-0455. ; 57:10, s. 1223-1229
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Ultrasound speckle tracking offers a non-invasive way of studying strain in the free Achilles tendon where no anatomical landmarks are available for tracking. This provides new possibilities for studying injury mechanisms during sport activity and the effects of shoes, orthotic devices, and rehabilitation protocols on tendon biomechanics. Purpose: To investigate the feasibility of using a commercial ultrasound speckle tracking algorithm for assessing strain in tendon tissue. Material and Methods: A polyvinyl alcohol (PVA) phantom, three porcine tendons, and a human Achilles tendon were mounted in a materials testing machine and loaded to 4% peak strain. Ultrasound long-axis cine-loops of the samples were recorded. Speckle tracking analysis of axial strain was performed using a commercial speckle tracking software. Estimated strain was then compared to reference strain known from the materials testing machine. Two frame rates and two region of interest (ROI) sizes were evaluated. Results: Best agreement between estimated strain and reference strain was found in the PVA phantom (absolute error in peak strain: 0.21 +/- 0.08%). The absolute error in peak strain varied between 0.72 +/- 0.65% and 10.64 +/- 3.40% in the different tendon samples. Strain determined with a frame rate of 39.4Hz had lower errors than 78.6Hz as was the case with a 22mm compared to an 11mm ROI. Conclusion: Errors in peak strain estimation showed high variability between tendon samples and were large in relation to strain levels previously described in the Achilles tendon.
  •  
2.
  • Larsson, David, et al. (författare)
  • Multimodal validation of patient-specific intraventricular flow simulations from 4D echocardiography
  • 2016
  • Ingår i: 2016 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS). - : IEEE conference proceedings. - 9781467398978
  • Konferensbidrag (refereegranskat)abstract
    • The combination of refined medical imaging techniques and computational fluid dynamics (CFD) models has enabled the study of complex flow behavior on a highly regional level. Recently, we have developed a platform for patient-specific CFD modelling of blood flow in the left ventricle (LV), with input data and required boundary conditions acquired from 4D echocardiography. The platform robustness has been evaluated with respect to input variable variations, but for any clinical implementation model flow validation is essential. Therefore, the aim of this study is to evaluate the accuracy of the patient-specific CFD model against multimodal image-based flow measurements. For the validation, 4D echocardiography was acquired from two healthy subjects, from which LV velocity fields were simulated. In-vivo flows from the same two subjects were then acquired by pulsed wave (PW) Doppler imaging over both LV-valves, and by cine phase-contract magnetic resonance imaging (PC-MRI) at eight defined anatomical planes in the LV. By fusing PC-MRI and the ultrasound acquisitions using a three-chamber alignment algorithm, simulated and measured flows were quantitatively compared. General flow pattern correspondence was observed, with a mean error of 1.4 cm/s and root mean square deviation of 5.7 cm/s for all measured PC-MRI LV-planes. For the PW-Doppler comparison, a mean error of 3.6 cm/s was reported. Overall, the following work represents a validation of the proposed patient-specific CFD platform, and the agreement with clinical data highlight the potential for future clinical use of the models.
  •  
3.
  • Bjällmark, Anna, et al. (författare)
  • Differences in myocardial velocities during supine and upright exercise stress echocardiography in healthy adults
  • 2009
  • Ingår i: Clinical Physiology and Functional Imaging. - 1475-0961 .- 1475-097X. ; 29:3, s. 216-223
  • Tidskriftsartikel (refereegranskat)abstract
    • Tissue Velocity Imaging (TVI) is a method for quantitative analysis of longitudinal myocardial velocities, which can be used during exercise and pharmacological stress echocardiography. It is of interest to evaluate cardiac response to different types of stress tests and the differences between upright and supine bicycle exercise tests have not been fully investigated. Therefore, the aim of this study was to compare cardiac response during supine and upright exercise stress tests. Twenty young healthy individuals underwent supine and upright stress test. The initial workload was set to 30 W and was increased every minute by a further 30 W until physical exhaustion. Tissue Doppler data from the left ventricle were acquired at the end of every workload level using a GE Vivid7 Dimension system (> 200 frames s(-1)). In the off-line processing, isovolumic contraction velocity (IVCV), peak systolic velocity (PSV), isovolumic relaxation velocity (IVRV), peak early diastolic velocity (E') and peak late diastolic velocity (A') were identified at every workload level. No significant difference between the tests was found in PSV. On the contrary, E' was shown to be significantly higher (P < 0.001) during supine exercise than during upright exercise and IVRV was significantly lower (P < 0.001) during supine exercise compared to upright exercise. Upright and supine exercise stress echocardiography give a comparable increase in measured systolic velocities and significant differences in early diastolic velocities.
  •  
4.
  • Bjällmark, Anna, et al. (författare)
  • Effects of hemodialysis on the cardiovascular system: Quantitative analysis using wave intensity wall analysis and tissue velocity imaging
  • 2010
  • Ingår i: Heart and Vessels. - : Springer Science and Business Media LLC. - 0910-8327 .- 1615-2573.
  • Tidskriftsartikel (refereegranskat)abstract
    • Cardiovascular disease is the leading cause of death in patients with end stage renal disease (ESRD). The aim of this study was to investigate the changes in cardiovascular function induced by a single session of hemodialysis (HD) by the analysis of cardiovascular dynamics using wave intensity wall analysis (WIWA) and of systolic and diastolic myocardial function using tissue velocity imaging (TVI). Grey-scale cine loops of the left common carotid artery, conventional echocardiography and TVI images of the left ventricle were acquired before and after HD in 45 patients (17 women, mean age 54) with ESRD. The WIWA indexes, W1 preload-adjusted W1, W2 and preload-adjusted W2, and the TVI variables, isovolumic contraction velocity (IVCV), isovolumic contraction time (IVCT), peak systolic velocity (PSV), displacement, isovolumic relaxation velocity (IVRV), isovolumic relaxation time (IVRT), peak early diastolic velocity (E’) and peak late diastolic velocity (A’), were compared before and after HD. The WIWA measurements showed significant increases in W1 (p < 0.05) and preload-adjusted W1 (p < 0.01) after HD. W2 was significantly decreased (p < 0.05) after HD, whereas the change in preload-adjusted W2 was not significant. Systolic velocities, IVCV (p < 0.001) and PSV (p < 0.01), were increased after HD, whereas the AV-plane displacement were decreased (p < 0.01). For the measured diastolic variables, E’ was significantly decreased (p < 0.01) and IVRT was significantly prolonged (p < 0.05), after HD. A few correlations were found between WIWA and TVI variables. The WIWA and TVI measurements indicate that a single session of HD improves systolic function. The load dependency of the diastolic variables seems to be more pronounced than for the systolic variables. Preload-adjusted wave intensity indexes may contribute in the assessment of true LV contractility and relaxation.
  •  
5.
  • Falkmer, Torbjörn, et al. (författare)
  • Fixation identification in centroid versus start-point modes using eye-tracking data
  • 2008
  • Ingår i: Perceptual and Motor Skills. - : Sage Publications. - 0031-5125 .- 1558-688X. ; 106:3, s. 710-724
  • Tidskriftsartikel (refereegranskat)abstract
    • Fixation-identification algorithms, needed for analyses of eye movements, may typically be separated into three categories, viz. (i) velocity-based algorithms, (ii) area-based algorithms, and (iii) dispersion-based algorithms. Dispersion-based algorithms are commonly used but this application introduces some difficulties, one being optimization. Basically, there are two modes to reach this goal of optimization, viz., the start-point mode and the centroid mode. The aim of the present study was to compare and evaluate these two dispersion-based algorithms. Manual inspections were made of 1,400 fixations in each mode. Odds ratios showed that by using the centroid mode for fixation detection, a valid fixation is 2.86 times more likely to be identified than by using the start-point mode. Moreover, the algorithm based on centroid mode dispersion showed a good interpretation speed, accuracy, robustness, and ease of implementation, as well as adequate parameter settings.
  •  
6.
  • Larsson, Matilda, 1981- (författare)
  • Quantification and Visualization of Cardiovascular Function using Ultrasound
  • 2009
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • There is a large need for accurate methods detecting cardiovascular diseases, since they are one of the leading causes of mortality in the world, accounting for 29.3% of all deaths. Due to the complexity of the cardiovascular system, it is very challenging to develop methods for quantification of its function in order to diagnose, prevent and treat cardiovascular diseases. Ultrasound is a technique allowing for inexpensive, noninvasive imaging, but requires an experienced echocardiographer. Nowadays, methods like Tissue Doppler imaging (TDI) and Speckle tracking imaging (STI), measuring motion and deformation in the myocardium and the vessel walls, are getting more common in routine clinical practice, but without a proper visualization of the data provided by these methods, they are time-consuming and difficult to interpret. Thus, the general aim of this thesis was to develop novel ultrasound-based methods for accurate quantification and easily interpretable visualization of cardiovascular function. Five methods based on TDI and STI were developed in the present studies. The first study comprised development of a method for generation of bull’s-eye plots providing a color-coded two-dimensional visualization of myocardial longitudinal velocities. The second study proposed the state diagram of the heart as a new circular visualization tool for cardiac mechanics, including segmental color-coding of cardiac time intervals. The third study included development of a method describing the rotation pattern of the left ventricle by calculating rotation axes at different levels of the left ventricle throughout the cardiac cycle. In the fourth study, deformation data from the artery wall were tested as input to wave intensity analysis providing information of the ventricular – arterial interaction. The fifth study included an in-silico feasibility study to test the assessment of both radial and longitudinal strain in a kinematic model of the carotid artery. The studies showed promising results indicating that the methods have potential for the detection of different cardiovascular diseases and are feasible for use in the clinical setting. However, further development of the methods and both quantitative comparison of user dependency, accuracy and ease of use with other established methods evaluating cardiovascular function, as well as additional testing of the clinical potential in larger study populations, are needed.
  •  
7.
  • Larsson, Matilda, 1981-, et al. (författare)
  • State diagrams of the heart - a new approach to describing cardiac mechanics
  • 2009
  • Ingår i: Cardiovascular Ultrasound. - : BMC. - 1476-7120. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Cardiac time intervals have been described as a measure of cardiac performance, where prolongation, shortening and delay of the different time intervals have been evaluated as markers of cardiac dysfunction. A relatively recently developed method with improved ability to measure cardiac events is Tissue Doppler Imaging (TDI), allowing accurate measurement of myocardial movements. Methods: We propose the state diagram of the heart as a new visualization tool for cardiac time intervals, presenting comparative, normalized data of systolic and diastolic performance, providing a more complete overview of cardiac function. This study aimed to test the feasibility of the state diagram method by presenting examples demonstrating its potential use in the clinical setting and by performing a clinical study, which included a comparison of the state diagram method with established echocardiography methods (E/E' ratio, LVEF and WMSI). The population in the clinical study consisted of seven patients with non ST-elevation myocardial infarction (NSTEMI) and seven control subjects, individually matched according to age and gender. The state diagram of the heart was generated from TDI curves from seven positions in the myocardium, visualizing the inter-and intraventricular function of the heart by displaying the cardiac phases. Results: The clinical examples demonstrated that the state diagram allows for an intuitive visualization of pathological patterns as ischemia and dyssynchrony. Further, significant differences in percentage duration between the control group and the NSTEMI group were found in eight of the totally twenty phases (10 phases for each ventricle), e.g. in the transition phases (Pre-Ejection and Post-Ejection). These phases were significantly longer (> 2.18%) for the NSTEMI group than for the control group (p < 0.05). No significant differences between the groups were found for the established echocardiography methods. Conclusion: The test results clearly indicate that the state diagram has potential to be an efficient tool for visualization of cardiac dysfunction and for detection of NSTEMI.
  •  
8.
  • Larsson, Matilda, 1981- (författare)
  • The rotation axis of the left ventricle - A new concept derived from ultrasound data in healthy individuals
  • Annan publikation (populärvet., debatt m.m.)abstract
    • Different modalities have been used to describe the circumferential motion of the left ventricle (LV) and studies have indicated LV twist to be an additional integral component in LV function. So far, only amplitudes of rotation have been reported, whereas the rotation pattern of the LV has not been fully described. However, data from a previous study on regional rotation have indicated that the axis around which the LV rotates, is not congruent to the longitudinal axis of the LV. The aim of the present study was to develop an ultrasound-based method to calculate the rotation axis of the LV in a three-dimensional aspect throughout the cardiac cycle and to apply it in a group of healthy individuals. An algorithm for calculation of rotation axes at the basal, mid-, apical and transitional levels of the LV was developed. By constructing a simplified model of the LV, based on rotation amplitudes measured at the basal, mid- and apical levels, rotation planes with similar values of rotation could be calculated at each level. The transition plane was defined as where the rotation values shifted from positive to negative. An overview of the rotation pattern was achieved by displaying data on deflection (angle between the rotation axis and the longitudinal axis of the LV) and direction (defined as the angle in a short-axis view of the LV with zero degrees at the lateral wall and increasing angles counterclockwise) of the rotation axes throughout the cardiac cycle. The deflection differed significantly from zero in all tested time points, i.e. the rotation axis was not congruent to the longitudinal axis of the LV. Rayleigh’s test for uniformity demonstrated a significant mean direction for each of the axes for the majority of the tested time points. Thus, the axis of rotation at different levels of the LV displayed a physiological pattern, where also stability of rotation could be assessed. Furthermore, the angle and level of the transition plane could be described over time. This new way of assessing rotational function provides further insight into the complexity of LV mechanics. The method has acceptable reproducibility but the potential clinical use of this method needs to be validated in further studies.
  •  
9.
  • Marlevi, David, et al. (författare)
  • Estimation of Cardiovascular Relative Pressure Using Virtual Work-Energy
  • 2019
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Many cardiovascular diseases lead to local increases in relative pressure, reflecting the higher costs of driving blood flow. The utility of this biomarker for stratifying the severity of disease has thus driven the development of methods to measure these relative pressures. While intravascular catheterisation remains the most direct measure, its invasiveness limits clinical application in many instances. Non-invasive Doppler ultrasound estimates have partially addressed this gap; however only provide relative pressure estimates for a range of constricted cardiovascular conditions. Here we introduce a non-invasive method that enables arbitrary interrogation of relative pressures throughout an imaged vascular structure, leveraging modern phase contrast magnetic resonance imaging, the virtual work-energy equations, and a virtual field to provide robust and accurate estimates. The versatility and accuracy of the method is verified in a set of complex patient-specific cardiovascular models, where relative pressures into previously inaccessible flow regions are assessed. The method is further validated within a cohort of congenital heart disease patients, providing a novel tool for probing relative pressures in-vivo.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy