SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "hsv:(TEKNIK OCH TEKNOLOGIER) hsv:(Miljöbioteknik) ;pers:(Anbalagan Anbarasan)"

Sökning: hsv:(TEKNIK OCH TEKNOLOGIER) hsv:(Miljöbioteknik) > Anbalagan Anbarasan

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Anbalagan, Anbarasan, 1988- (författare)
  • A passage to wastewater nutrient recovery units : Microalgal-Bacterial bioreactors
  • 2018
  • Konstnärligt arbete (övrigt vetenskapligt/konstnärligt)abstract
    • In recent years, the microalgal–bacterial process has been considered to be a very attractive engineering solution for wastewater treatment. However, it has not been widely studied in the context of conventional wastewater treatment design under Swedish conditions. The technology holds several advantages: as a CO2 sink, ability to withstand cold conditions, ability to grow under low light, fast settling without chemical precipitation, and reducing the loss of valuable nutrients (CO2, N2, N2O, PO4). The process also provides the option to be operated either as mainstream (treatment of municipal wastewater) or side stream (treatment of centrate from anaerobic digesters) to reduce the nutrient load of the wastewater. Furthermore, the application is not only limited to wastewater treatment; the biomass can be used to synthesise platform chemicals or biofuels and can be followed by recovery of ammonium and phosphate for use in agriculture.In the present study, the feasibility of applying the process in Swedish temperature and light conditions was investigated by implementing microalgae within the activated sludge process. In this context, the supporting operational and performance indicators (hydraulic retention time (HRT), sludge retention time (SRT) and nutrients removal) were evaluated to support naturally occurring consortia in photo-sequencing and continuous bioreactor configuration. Furthermore, CO2 uptake and light spectrum-mediated nutrient removal were investigated to reduce the impact on climate and the technical challenges associated with this type of system.The results identified effective retention times of 6 and 4 days (HRT = SRT) under limited lighting to reduce the electrical consumption. From the perspective of nitrogen removal, the process demands effective CO2 input either in the mainstream or side stream treatment. The incorporation of a vertical absorption column demonstrated effective CO2 mass transfer to support efficient nitrogen and phosphorus removal as a side stream treatment. However, the investigation of a continuous single-stage process as the mainstream showed a requirement for a lower SRT in comparison to semi-continuous operation due to faster settlability, regardless of inorganic carbon. Furthermore, the process showed an effective reduction of influent phosphorus and organic compounds (i.e. COD/TOC) load in the wastewater as a result of photosynthetic aeration. Most importantly, the operation was stable at the temperature equivalent of wastewater (12 and 13 ˚C), under different lighting (white, and red-blue wavelengths) and retention times (6 and 1.5 d HRT) with complete nitrification. Additionally, the biomass production was stable with faster settling properties without any physiochemical separation.The outcomes of this thesis on microalgal–bacterial nutrient removal demonstrates that (1) photosynthesis-based aeration at existing wastewater conditions under photo-sequential and continuous photobioreactor setup, (2) flocs with rapid settling characteristics at all studied retention times, (3) the possibility of increasing carbon supplementation to achieve higher carbon to nitrogen balance in the photobioreactor, and (4) most importantly, nitrification-based microalgal biomass uptake occurred at all spectral distributions, lower photosynthetic active radiation and existing wastewater conditions.
  •  
2.
  • Anbalagan, Anbarasan, et al. (författare)
  • Influence of hydraulic retention time on indigenous microalgae and activated sludge process
  • 2016
  • Ingår i: Water Research. - : Elsevier BV. - 0043-1354 .- 1879-2448. ; 91, s. 277-284
  • Tidskriftsartikel (refereegranskat)abstract
    • Integration of the microalgae and activated sludge (MAAS) process in municipal wastewater treatment and biogas production from recovered MAAS was investigated by studying the hydraulic retention time (HRT) of semi-continuous photo-bioreactors. An average total nitrogen (TN) removal efficiency (RE) of maximum 81.5 ± 5.1 and 64.6 ± 16.2% was achieved at 6 and 4 days HRT. RE of total phosphorous (TP) increased slightly at 6 days (80 ± 12%) HRT and stabilized at 4 days (56 ± 5%) and 2 days (55.5 ± 5.5%) HRT due to the fluctuations in COD and N/P mass ratio of the periodic wastewater. COD and organic carbon were removed efficiently and a rapidly settleable MAAS with a sludge volume index (SVI_10) of less than 117 mL g-1 was observed at all HRTs. The anaerobic digestion of the untreated MAAS showed a higher biogas yield of 349 ± 10 mL g VS-1 with 2 days HRT due to a low solids retention time (SRT). Thermal pretreatment of the MAAS (120 °C, 120 min) did not show any improvement with biogas production at 6 days (269 ± 3 (untreated) and 266 ± 16 (treated) mL gVS-1), 4 days (258 ± 11(untreated) and 263 ± 10 (treated) mL gVS-1) and 2 days (308 ± 19 mL (treated) gVS-1) HRT. Hence, the biogas potential tests showed that the untreated MAAS was a feasible substrate for biogas production. Results from this proof of concept support the application of MAAS in wastewater treatment for Swedish conditions to reduce aeration, precipitation chemicals and CO2 emissions. 
  •  
3.
  • Anbalagan, Anbarasan, et al. (författare)
  • Continuous photosynthetic abatement of CO2 and volatile organic compounds from exhaust gas coupled to wastewater treatment : Evaluation of tubular algal-bacterial photobioreactor
  • 2017
  • Ingår i: Journal of CO2 Utilization. - : Elsevier Ltd. - 2212-9820 .- 2212-9839. ; 21, s. 353-359
  • Tidskriftsartikel (refereegranskat)abstract
    • The continuous abatement of CO2 and toluene from the exhaust gas by an indigenous microalgal-bacterial consortium was investigated in a pilot tubular photobioreactor interconnected to an absorption column using diluted centrate in seawater as a free nutrient source. The removal efficiency of CO2 and toluene was maximised in the vertical absorption column by identifying an optimum liquid to gas (L/G) ratio of 15. The photobioreactor supported steady-state nitrogen and phosphorus removals of 91 ± 2% and 95 ± 4% using 15% diluted centrate at 14 and 7 d of hydraulic retention time (HRT), respectively. A decrease in the removal efficiencies of nitrogen (36 ± 5%) and phosphorus (58 ± 10%) was recorded when using 30% diluted centrate at 7 d of HRT. The volumetric biomass productivities obtained at an HRT of 7 d accounted for 42 ± 11 and 80 ± 3 mg TSS L-1 d-1 using 15 and 30% centrate, respectively. Stable CO2 (76 ± 7%) and toluene removals (89 ± 5%) were achieved at an L/G ratio of 15 regardless of the HRT or centrate dilution. Hence, this study demonstrated the potential of algal-bacterial systems for the continuous removal of CO2 and volatile organic compounds from exhaust gas coupled with the simultaneous treatment of centrate. 
  •  
4.
  • Anbalagan, Anbarasan, 1988- (författare)
  • Indigenous microalgae-activated sludge cultivation system for wastewater treatment
  • 2016
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The municipal wastewater is mainly composed of water containing anthropogenic wastes that are rich in nutrients such as carbon, nitrogen and phosphorous. The cost for biological treatment of wastewater is increasing globally due to the population growth in urban cities. In general, the activated sludge (AS) process is a biological nutrient removal process used in wastewater treatment plants (WWTPs). The AS is composed of different microorganisms in which bacteria play a crucial role in wastewater treatment (WWT). During the process, air is bubbled to supply oxygen and methanol is added to improve nitrogen removal, which is released as a gas. Phosphorous is removed in the expense of precipitation chemicals. Altogether, the current process requires electrical energy, precipitation chemicals, handling of excess sludge and it emits carbon dioxide (CO2) as a by-product. This process is still in practise in the WWTPs since 1914 although numerous modifications are implemented to meet the stringent regulations in the European Union and globally.Microalgae are microorganisms that perform photosynthesis like plants. They are green and reproduce fast using available nutrients (nitrogen and phosphorous) and CO2 from their environment in the presence of light. As a result of photosynthesis, oxygen is released as waste gas. The synthesised oxygen during this process can be implemented to support the AS bacteria that leads to the microalgae activated sludge (MAAS) process. The main advantage is combined removal of nutrients.The vision of the research is to implement the indigenous microalgae cultivation in activated sludge process to consume CO2 and recover the nutrients from wastewater. This study is performed to improve the understanding of the process such as: light utilisation, nutrient removal and recovery of the biomass from wastewater in closed photo-bioreactors. Photo-bioreactors are vessels where the cultivation is carried out in the presence of light. At first, the influence of the light spectrum on micro-algal cultivation is investigated for photosynthetic growth. This is followed by operational challenges of the microalgae cultivation during the AS process. The process is experimentally performed in the photo-bioreactors with different treatment time of the raw wastewater. The results showed that 2 - 6 days of treatment time can be used for reducing nutrients in wastewater if the process is optimised further. Also, nutrient ratio is analysed for the availability of the micro-algal growth. Furthermore, the biogas potential of MAAS showed a biogas yield of about 60-80% within 5 to 9 days.At last, the experimental verification of chemically precipitated wastewater showed limitation of phosphorous for micro-algal growth. Additionally, the optimal oxygen supply through light response is verified for photo-bioreactors. The outcome of this study shows that knowing the right conditions can lower the treatment time. By doing so, a stable nutrient removal and reduction of precipitation chemicals can be established as well as a better recovery of valuable nutrients as phosphorous and nitrogen.
  •  
5.
  •  
6.
  •  
7.
  • Punzi, Marisa, et al. (författare)
  • Degradation of a textile azo dye using biological treatment followed by photo-Fenton oxidation : Evaluation of toxicity and microbial community structure
  • 2015
  • Ingår i: Chemical Engineering Journal. - : Elsevier BV. - 1385-8947 .- 1873-3212. ; 270, s. 290-299
  • Tidskriftsartikel (refereegranskat)abstract
    • Many commercial dye preparations are cocktails of active dyes and various by-products that are recalcitrant to biological degradation and end up in significant amounts in the effluent after the dyeing process. Conventional wastewater treatment processes are not able to degrade such compounds and detoxify the effluent, thus alternative treatments should be developed.In our work we suggest to use photo-Fenton oxidation as post-treatment after an anaerobic biofilm process, in a way to minimize the reagents needed. This process was used for treatment of synthetic textile wastewater containing the commercial azo dyestuff Remazol Red, starch and sodium chloride. The treated textile effluent had COD lower than 18. mg/l even when using initial Fenton reagents concentration as low as 1. mM ferrous ions and 10. mM hydrogen peroxide. The acute toxicity was higher in the biologically treated than in the untreated effluent. Photo-Fenton oxidation successfully reduced the toxicity and the final effluent was non-toxic to Artemia salina and Microtox, with the exception of the effluent containing high concentration of sodium chloride, which was moderately toxic to Microtox. For the first time the presence of algae was detected in a reactor treating textile wastewater using denaturing gradient gel electrophoresis (DGGE); bacteria and fungi were also abundant.The results of this study suggest that using advanced oxidation after biological treatment is an effective way to degrade the organic compounds and remove toxicity from textile effluents.
  •  
8.
  • Schwede, Sebastian, et al. (författare)
  • Evaluation of the microalgae-based activated sludge (MAAS) process for municipal wastewater treatment on pilot scale
  • 2016
  • Konferensbidrag (refereegranskat)abstract
    • The microalgae-based activated sludge (MAAS) process was evaluated regarding the removal efficiency of organic matter and nitrogen from physiochemically pretreated municipal wastewater at different hydraulic retention time (HRT) on pilot scale. Additionally, the interplay between the algal and bacterial consortium was evaluated regarding the ability of the algal consortium to provide oxygen for bacterial oxidation processes. The results showed in general high organic matter (COD removal 75-90%) and total nitrogen (40-50%) removal at all HRTs (6, 4 and 2 days). The dissolved oxygen (DO) concentration was maintained stable at 6 days (6.04±0.47 mg L-1) and 4 days (4.24±0.62 mg L-1) HRT. However, the DO significantly declined at 2 days HRT due to loss of biomass at the high influent flow in the sedimentation unit. Nevertheless, the MAAS process functioned as a symbiotic algal-bacterial system with bacterial organic matter oxidation and nitrification and algal nutrient removal.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy