SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "hsv:(TEKNIK OCH TEKNOLOGIER) hsv:(Naturresursteknik) ;pers:(Fransson Johan E.S.)"

Sökning: hsv:(TEKNIK OCH TEKNOLOGIER) hsv:(Naturresursteknik) > Fransson Johan E.S.

  • Resultat 1-10 av 51
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fransson, Johan E.S., et al. (författare)
  • Estimation of Forest Stem Volume using ALOS-2 PALSAR-2 Satellite Images
  • 2016
  • Ingår i: Proceedings of 36th IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2016; Beijing; China; 10-15 July 2016. - 9781509033324 ; 2016-November, s. Art no 7730388, Pages 5327-5330
  • Konferensbidrag (refereegranskat)abstract
    • © 2016 IEEE. A first evaluation of ALOS-2 PALSAR-2 data for forest stem volume estimation has been performed at a coniferous dominated test site in southern Sweden. Both the Fine Beam Dual (FBD) polarization and the Quad-polarimetric mode were investigated. Forest plots with stem volume reaching up to a maximum of about 620 m 3 ha -1 (corresponding to 370 tons ha -1 ) were analyzed by relating backscatter intensity to field data using an exponential model derived from the Water Cloud Model. The estimation accuracy of stem volume at plot level (0.5 ha) was calculated in terms of Root Mean Square Error (RMSE). For the best case investigated an RMSE of 39.8% was obtained using one of the FBD HV-polarized images. The corresponding RMSE for the FBD HH-polarized images was 43.9%. In the Quad-polarimetric mode the lowest RMSE at HV- and HH-polarization was found to be 43.1% and 66.1%, respectively.
  •  
2.
  • Askne, Jan, 1936, et al. (författare)
  • Model-Based Biomass Estimation of a Hemi-Boreal Forest from Multitemporal TanDEM-X Acquisitions
  • 2013
  • Ingår i: Remote Sensing. - : MDPI AG. - 2072-4292. ; 5:11, s. 5574-5597
  • Tidskriftsartikel (refereegranskat)abstract
    • Above-ground forest biomass is a significant variable in the terrestrial carbon budget, but is still estimated with relatively large uncertainty. Remote sensing methods can improve the characterization of the spatial distribution and estimation accuracy of biomass; in this respect, it is important to examine the potential offered by new sensors. To assess the contribution of the TanDEM-X mission, eighteen interferometric Synthetic Aperture Radar (SAR) image pairs acquired over the hemi-boreal test site of Remningstorp in Sweden were investigated. Three models were used for interpretation of TanDEM-X signatures and above-ground biomass retrieval: Interferometric Water Cloud Model (IWCM), Random Volume over Ground (RVoG) model, and a simple model based on penetration depth (PD). All use an allometric expression to relate above-ground biomass to forest height measured by TanDEM-X. The retrieval was assessed on 201 forest stands with a minimum size of 1 ha, and ranging from 6 to 267 Mg/ha (mean biomass of 105 Mg/ha) equally divided into a model training dataset and a validation test dataset. Biomass retrieved using the IWCM resulted in a Root Mean Square Error (RMSE) between 17% and 33%, depending on acquisition date and image acquisition geometry (angle of incidence, interferometric baseline, and orbit type). The RMSE in the case of the RVoG and the PD models were slightly higher. A multitemporal estimate of the above-ground biomass using all eighteen acquisitions resulted in an RMSE of 16% with R-2 = 0.93. These results prove the capability of TanDEM-X interferometric data to estimate forest aboveground biomass in the boreal zone.
  •  
3.
  • Bohlin, Jonas, et al. (författare)
  • A comparison of forest inventories based on aerial image matching and Airborne Laser Scanning data
  • 2014
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Forest inventories are now commonly done by Airborne Laser Scanning (ALS), especially because many countries are collecting ALS data nation-wide to produce high quality elevation data. With an accurate digital elevation model, 3D data from aerial image matching could be a more cost-effective alternative to repeated ALS acquisitions for providing updated data to forest management planning in the future. This study aims at comparing the quality of forest inventory data obtained by aerial image matching and ALS. In the study area, a mixed boreal forest situated in central Sweden, aerial images from the national acquisition program with a ground sampling distance of 0.5 m and ALS data with a point density of 1.5-2 pulses per m2 from the national ALS production were available. The aerial images were matched with three different algorithms to assess possible differences in forest information content. Two hundred field plots, located within the study area, were utilized for non-parametric prediction of forest variables using random forest. Accuracy assessment was made by leave-one-out cross-validation at plot level. The results show similar accuracy of ALS and image matching-based predictions, with ALS slightly superior. Accuracy, in terms of root mean square errors in percent of surveyed plot mean, of ALS were: 6.4% for tree height; 12.5% for tree diameter; 18.2% for basal area and 20.0% for stem volume, and of image matching: 9.5% for tree height; 15.3% for tree diameter; 21.8% for basal area and 24.8% for stem volume. Among the image matching algorithms used, SURE was found to estimate the forest variables with best accuracies. However, the other algorithms produced similar results. These results indicate that inventory data acquired by matching of aerial images have a large potential for operational use in forest management planning as a cost-effective alternative to new ALS campaigns.
  •  
4.
  • Bohlin, Jonas, et al. (författare)
  • Deciduous forest mapping using change detection of multi-temporal canopy height models from aerial images acquired at leaf-on and leaf-off conditions
  • 2016
  • Ingår i: Scandinavian Journal of Forest Research. - : Informa UK Limited. - 0282-7581 .- 1651-1891. ; 31, s. 517-525
  • Tidskriftsartikel (refereegranskat)abstract
    • Discrimination of deciduous trees using spectral information from aerial images has only been partly successfully due to the complexity of the reflectance at different view angles, times of acquisition, phenology of the trees and inter-tree radiance. Therefore, the objective was to evaluate the accuracy of estimating the proportion of deciduous stem volume (P) utilizing change detection between canopy height models (CHMs) generated by digital photogrammetry from leaf-on and leaf-off aerial images instead of using spectral information. The study was conducted at a hemiboreal study area in Sweden. Using aerial images from three seasons, CHMs with a resolution of approximately 0.5 m were generated using semi-global matching. For training plots, metrics describing the change between leaf-on and leaf-off conditions were calculated and used to model the continuous variable P, using the Random Forest approach. Validated at sub-stands, the estimation accuracy of P in terms of root mean square error and bias was found to be 18% and −6%, respectively. The overall classification accuracy, using four equally wide classes, was 83% with a kappa value of 0.68. The validation plots in classes of high proportion of coniferous or deciduous stem volume were well classified, whereas the mixed forest classes showed lower classification accuracies.
  •  
5.
  •  
6.
  • Bohlin, Jonas, et al. (författare)
  • Extraction of Spectral Information from Airborne 3D Data for Assessment of Tree Species Proportions
  • 2021
  • Ingår i: Remote Sensing. - : MDPI AG. - 2072-4292. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • With the rapid development of photogrammetric software and accessible camera technology, land surveys and other mapping organizations now provide various point cloud and digital surface model products from aerial images, often including spectral information. In this study, methods for colouring the point cloud and the importance of different metrics were compared for tree species-specific estimates at a coniferous hemi-boreal test site in southern Sweden. A total of three different data sets of aerial image-based products and one multi-spectral lidar data set were used to estimate tree species-specific proportion and stem volume using an area-based approach. Metrics were calculated for 156 field plots (10 m radius) from point cloud data and used in a Random Forest analysis. Plot level accuracy was evaluated using leave-one-out cross-validation. The results showed small differences in estimation accuracy of species-specific variables between the colouring methods. Simple averages of the spectral metrics had the highest importance and using spectral data from two seasons improved species prediction, especially deciduous proportion. Best tree species-specific proportion was estimated using multi-spectral lidar with 0.22 root mean square error (RMSE) for pine, 0.22 for spruce and 0.16 for deciduous. Corresponding RMSE for aerial images was 0.24, 0.23 and 0.20 for pine, spruce and deciduous, respectively. For the species-specific stem volume at plot level using image data, the RMSE in percent of surveyed mean was 129% for pine, 60% for spruce and 118% for deciduous.
  •  
7.
  • Bohlin, Jonas, et al. (författare)
  • Forest variable estimation using photogrammetric matching of digital aerial images in combination with a high-resolution DEM
  • 2012
  • Ingår i: Scandinavian Journal of Forest Research. - : Informa UK Limited. - 0282-7581 .- 1651-1891. ; 27, s. 692-699
  • Tidskriftsartikel (refereegranskat)abstract
    • The rapid development in aerial digital cameras in combination with the increased availability of high-resolution Digital Elevation Models (DEMs) provides a renaissance for photogrammetry in forest management planning. Tree height, stem volume, and basal area were estimated for forest stands using canopy height, density, and texture metrics derived from photogrammetric matching of digital aerial images and a high-resolution DEM. The study was conducted at a coniferous hemi-boreal site in southern Sweden. Three different data-sets of digital aerial images were used to test the effects of flight altitude and stereo overlap on an area-based estimation of forest variables. Metrics were calculated for 344 field plots (10 m radius) from point cloud data and used in regression analysis. Stand level accuracy was evaluated using leave-one-out cross validation of 24 stands. For these stands the tree height ranged from 4.8 to 26.9 m (17.8 m mean), stem volume 13.3 to 455 m3 ha-1 (250 m3 ha-1 mean), and basal area from 4.1 to 42.9 m2 ha-1 (27.1 m2 ha-1 mean) with mean stand size of 2.8 ha. The results showed small differences in estimation accuracy of forest variables between the data-sets. The data-set of digital aerial images corresponding to the standard acquisition of the Swedish National Land Survey (Lantma¨teriet), showed Root Mean Square Errors (in percent of the surveyed stand mean) of 8.8% for tree height, 13.1% for stem volume and 14.9% for basal area. The results imply that photogrammetric matching of digital aerial images has significant potential for operational use in forestry.
  •  
8.
  • Bohlin, Jonas, et al. (författare)
  • Species-specific forest variable estimation using non-parametric modeling of multi-spectral photogrammetric point cloud data
  • 2012
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • The recent development in software for automatic photogrammetric processing of multispectral aerial imagery, and the growing nation-wide availability of Digital Elevation Model (DEM) data, are about to revolutionize data capture for forest management planning in Scandinavia. Using only already available aerial imagery and ALS-assessed DEM data, raster estimates of the forest variables mean tree height, basal area, total stem volume, and species-specific stem volumes were produced and evaluated. The study was conducted at a coniferous hemi-boreal test site in southern Sweden (lat. 58° N, long. 13° E). Digital aerial images from the Zeiss/Intergraph Digital Mapping Camera system were used to produce 3D point-cloud data with spectral information. Metrics were calculated for 696 field plots (10 m radius) from point-cloud data and used in k-MSN to estimate forest variables. For these stands, the tree height ranged from 1.4 to 33.0 m (18.1 m mean), stem volume from 0 to 829 m3 ha-1 (249 m3 ha-1 mean) and basal area from 0 to 62.2 m2 ha-1 (26.1 m2 ha-1 mean), with mean stand size of 2.8 ha. Estimates made using digital aerial images corresponding to the standard acquisition of the Swedish National Land Survey (Lantmäteriet) showed RMSEs (in percent of the surveyed stand mean) of 7.5% for tree height, 11.4% for basal area, 13.2% for total stem volume, 90.6% for pine stem volume, 26.4 for spruce stem volume, and 72.6% for deciduous stem volume. The results imply that photogrammetric matching of digital aerial images has significant potential for operational use in forestry.
  •  
9.
  •  
10.
  • Eriksson, Leif, 1970, et al. (författare)
  • Backscatter signatures of wind-thrown forest in satellite SAR images
  • 2012
  • Ingår i: International Geoscience and Remote Sensing Symposium (IGARSS). - 2153-6996 .- 2153-7003. - 9781467311588 ; , s. 6435-6438
  • Konferensbidrag (refereegranskat)abstract
    • Two field experiments have been conducted in Sweden to allow an evaluation of the backscatter signatures of wind-thrown forest from L-band, C-band and X-band Synthetic Aperture Radar. When the trees are felled the backscattered signal from TerraSAR-X (X-band) increase with about 1.5 dB, while for ALOS PALSAR (L-band) a decrease with the same amount is observed. Radar images with fine spatial resolution also show shadowing effects that should be possible to use for identification of storm felled forest.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 51

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy