SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "hsv:(TEKNIK OCH TEKNOLOGIER) hsv:(Samhällsbyggnadsteknik) hsv:(Geoteknik) ;pers:(Hatem Mohammed)"

Sökning: hsv:(TEKNIK OCH TEKNOLOGIER) hsv:(Samhällsbyggnadsteknik) hsv:(Geoteknik) > Hatem Mohammed

  • Resultat 1-10 av 21
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hatem Mohammed, Mohammed, et al. (författare)
  • Hydrothermal alteration of clay and low pH concrete applicable to deep borehole disposal of high-level radioactive waste : A pilot study
  • 2016
  • Ingår i: Construction and Building Materials. - : Elsevier BV. - 0950-0618 .- 1879-0526. ; 104, s. 1-8
  • Tidskriftsartikel (refereegranskat)abstract
    • In the very deep borehole (VDH) concept for high level radioactive waste disposal, the combined usage of clay and concrete provides an attractive way of achieving both high strength and low permeability required for sealing the various sections of the hole. The concrete is required for mechanical stability where water-bearing fracture zones are intersected, whereas the clay effectively seals sections in stable rock masses. As both the clay and concrete may be exposed to temperatures in the range of 60–150 °C in various parts of the hole, there is a need to address the stability of these materials under thermally enhanced aqueous conditions. In this pilot study, a new type of organic-free, low pH concrete based on granulated blast furnace slag is tested, which is hardened and altered under hydrothermal conditions in the laboratory. The results presented show that both adequate compressive strength (up to ∼9 MPa) and low hydraulic conductivity (down to ∼5.6 × 10−10) is attained at elevated temperatures ranging up to 150 °C, indicating that clay-concrete sealing can be a successful method used to prevent radionuclides from migrating vertically up through the borehole repository.
  •  
2.
  • Pusch, Roland, et al. (författare)
  • A talc-based cement-poor concrete for sealing boreholes in rock
  • 2013
  • Ingår i: Engineering. - : Scientific Research Publishing, Inc.. - 1947-3931 .- 1947-394X. ; 5:3, s. 251-267
  • Tidskriftsartikel (refereegranskat)abstract
    • Deep investigation boreholes in crystalline rock for site selection of repositories for high-level radioactive waste are proposed to be sealed by installing a series of dense concrete and clay plugs. These should prevent radionuclides from leaking canisters at depth to migrate to the biosphere through the holes. The concrete seals will be installed where the holes intersect water-bearing fracture zones to serve as stable and low-permeable supports for adjacent clay plugs. Low porosity and microstructural stability must be guaranteed for many thousands of years and ordinary Portland cement with organic superplastizer will not fulfil the requirements since the high pH will cause degradation of contacting clay and the organic additive can produce colloids with a capacity to carry radionuclides up to the biosphere. Very cement-poor concrete (<8 %) based on low-pH cement and with talc as plasticizer is an option but it matures more slowly, which requires that the construction of seals is made so that sufficient bearing capacity for carrying overlying clay seals is reached.
  •  
3.
  • Pusch, Roland, et al. (författare)
  • Can sealing of rock hosting a repository for highly radioactive waste be relied on?
  • 2012
  • Ingår i: Natural Science. - : Scientific Research Publishing, Inc.. - 2150-4091 .- 2150-4105. ; 4:11A, s. 895-905
  • Tidskriftsartikel (refereegranskat)abstract
    • Multibarrier systems are commonly proposed for effective isolation of highly radioactive waste (HLW). Presently considered concepts take the host rock as a barrier claiming it to retard migration of possibly released radionuclides from HLW containers to the biosphere. This capacity is small unless water-bearing fracture zones intersecting the blasted waste-containing tunnels and excavation-disturbance zones around them can be sealed by grouting and construction of bulkheads, but this is effective only for a very limited period of time as explained in the paper. The disturbed zones thence make the entire repository serve as a continuous hydraulic conductor causing quick transport of released radionuclides up to the biosphere. The dilemma can be solved by accepting the short-circuiting function of the disturbed zones along the tunnels on the condition that totally tight waste containers be used. Deep holes bored in the site selection phase through the forthcoming repository can be effective pathways for radionuclides unless they are properly sealed. They are small-scale equivalents of tunnels but do not have any ex-cavation damage and can be effectively sealed by using clay and concrete of new types. Applying this principle to very deep boreholes with a diameter of a few decimeters would make it possible to safely store slim, tight HLW canisters for any period of time.
  •  
4.
  • Hatem, Mohammed, et al. (författare)
  • Design of concrete mixes by systematic steps and ANN
  • 2012
  • Ingår i: Journal of Advanced Science and Engineering Research. - 2231-8844. ; 2:4, s. 232-251
  • Tidskriftsartikel (refereegranskat)abstract
    • The current research caters for the possibility of arriving at a system for designing concrete mixeseasily using available materials locally by specified wide ranges of pre-requisites of three mainprescribed properties to cover a good variety of practical mixes, which are water, water-cement ratioand total aggregate-cement ratio. Using these three properties, a tri-linear form was constructed bygraphical technique manner based on absolute volume approach. This approach defines as asummation of absolute volume for each of these three materials individually water, cement andaggregate should be equal to the absolute volume of whole concrete mixture based on thesealtogether. A quad-form area which includes a wide range of mixes can be formed from thisrepresentation. This area should achieve all the prescribed properties aforementioned. Artificial neuralnetwork concept used in this study also to build easily and quickly system which can be translatedinto Excel sheet. This system predict proportions of concrete mixture and the compressive strengthusing the results designed by the quad-form area method in addition to the data from literature around500 mixes based on local materials used in Iraq. Six input parameters (water to cement ratio, theslump, % of fine to total aggregate content, maximum aggregate size, fineness modulus of fineaggregate and the compressive strength) were used in this system to get the outputs. In addition, nineinput parameters ((water, cement, sand and gravel contents) and the properties of the mix (Finenessmodulus, W/C ratio, the slump, % of fine to total aggregate and the M.A.S)) were used as basis ofcompressive strength model. The algorithm of this system aimed to reduce the high number of trailmixes error as well as saving the labors, cost and time. Results indicated that the concrete mix designand the compressive strength model can be predicted accurately by using graphical perspective andthe ANN approach.
  •  
5.
  • Hatem, Mohammed, et al. (författare)
  • Enhancement of Workability of Cement-Poor Concrete by Optimizing Paste Content
  • 2014
  • Ingår i: Engineering. - : Scientific Research Publishing, Inc.. - 1947-3931 .- 1947-394X. ; 6:13, s. 869-876
  • Tidskriftsartikel (refereegranskat)abstract
    • This study describes the performance of concrete in fresh state, intended for sealing deep boreholes in the host rock of radioactive repositories. Set of different paste volumes, combinations of water-to-powder ratios and fine aggregate contents have been performed within the frame of this study. The main objective was to search for tendencies, logical connections and phenomena that occur for different combination of materials regarding the fluidity and segregation and mainly the effect from the (paste) or fine aggregate content. It shall be pointed out that this investigation is a suggestion on how concrete can be optimized using two simple test methods based on changing the paste content. The results highlighted the importance of having sufficient amounts of filler and cement paste for separate and carry larger particles, which gives the concrete good workability and fluidity at casting. It was concluded that the slump behaviors can be optimized based on the adjustments of the superplastisizer dosage.
  •  
6.
  • Hatem, Mohammed, et al. (författare)
  • Interaction of clay and concrete relevant to the deep disposal of high-level radioactive waste
  • 2015
  • Ingår i: Applied Clay Science. - : Elsevier BV. - 0169-1317 .- 1872-9053. ; 118, s. 178-187
  • Tidskriftsartikel (refereegranskat)abstract
    • A concept for the disposal of highly radioactive waste at depth in the Earth’s crust using very deep bore-holes requires that the upper 2 km’s of the 800 mm diameter, steeply drilled holes, be effectively sealed. This can be achieved by using dense smectitic clay where the rock is weakly fractured and strengthening with concrete when fracture zones are encountered. Earlier investigations have shown that chemical reactions between the clay and concrete can be expected both in the upper part where the temperature is lower than 90oC and in the deeper section where the temperature reaches up to 150oC. To study further this interaction, hydrothermal experiments were conducted using mixed-layer (illite/smectite) Holmehus clay and a low pH slag-based concrete placed in contact under isothermal conditions at 21°C, 100oC and 150oC for a period of 8 weeks. The sample sets, which consisted of two clay discs separated by concrete cast on the lower clay disc, were extracted in undisturbed form and exposed to uniaxial pressure for measuring the compressive strength at successively increasing pressures. Compression tests underenhanced thermal conditions led to strengthening of both the clay and concrete. X-ray diffraction and electron microscopy analysis of the material revealed an increasing degree of cation exchange at higher temperatures with the cement, whereby Ca replaced Na in the interlayer sites of smectite layers. Dissolution of illite/smectite was also evident occurring at enhanced temperatures, with a decrease in K, Mg and Fe content with advanced alteration. The enhanced strength of clay can be partly attributed to the precipitation of cement phases from circulating fluids, including precipitation of gypsum.
  •  
7.
  • Hatem, Mohammed, et al. (författare)
  • Packing theory for natural and crushed aggregate to obtain the best mix of aggregate : research and development
  • 2012
  • Ingår i: Proceedings of World Academy of Science, Engineering and Technology. - 2010-376X .- 2070-3740. ; 6:7, s. 479-485
  • Tidskriftsartikel (refereegranskat)abstract
    • Concrete performance is strongly affected by the particle packing degree since it determines the distribution of the cementitious component and the interaction of mineral particles. By using packing theory designers will be able to select optimal aggregate materials for preparing concrete with low cement content, which is beneficial from the point of cost. Optimum particle packing implies minimizing porosity and thereby reducing the amount of cement paste needed to fill the voids between the aggregate particles, taking also the rheology of the concrete into consideration. For reaching good fluidity superplasticizers are required. The results from pilot tests at Luleå University of Technology (LTU) show various forms of the proposed theoretical models, and the empirical approach taken in the study seems to provide a safer basis for developing new, improved packing models.
  •  
8.
  • Hatem, Mohammed, et al. (författare)
  • Performance of Cement-poor Concrete with Different Superplasticizers
  • 2014
  • Ingår i: International Journal of Research and Reviews in Applied Sciences. - 2076-734X .- 2076-7366. ; 18:2, s. 163-172
  • Tidskriftsartikel (refereegranskat)abstract
    • Concrete can be used for casting plugs in deep boreholes where fracture zones are intersected. They will be exposed to flowing groundwater and be in contact with very tight seals of smectite clay installed where the surrounding rock is tight. The cast concrete must be able to carry the clay segments placed over it after a few days. Its bearing capacity does not have to be very high after that since the clay soon adheres to the rock and carries itself. The concrete must be poor in cement for minimizing the risk of creation of voids caused by dissolution of the cement and it should have “inert” aggregate of quartz-rich material. Inorganic superplasticizers instead of conventional organic ones should be used for eliminating the risk of degradation and loss by formation of colloids that can carry radionuclides to the biosphere from holes bored in repository rock. The two concrete types discussed in the present study had Portland and Merit 5000 low pH cement as binders and crushed quartzite as aggregate. Talc mineral powder and ordinary organic Glenium 51 were used as superplasticizers for comparing their impact on the physical properties. The matrix of the cement-poor talc concrete gave ductile behaviour during initial hardening. The very dense matrix of either of the concretes would not lead to compression of the system even after complete loss of cement, which will happen over a longer period of time. The overall conclusion was that talc as superplasticizer and conditioner of the concrete can make the concrete sufficiently fluid for constructing seals at depth in boreholes, and react with cement to provide high strength with some delay. pH is much lower in Merit than in Portland concrete, which causes less impact on the clay seals. Portland concrete has five times higher strength than Merit concrete after a week but three times lower strength after 28 days.
  •  
9.
  • Hatem, Mohammed, et al. (författare)
  • Proportioning of cement-based grout for sealing fractured rock-use of packing models
  • 2013
  • Ingår i: Engineering. - : Scientific Research Publishing, Inc.. - 1947-3931 .- 1947-394X. ; 5:10, s. 765-774
  • Tidskriftsartikel (refereegranskat)abstract
    • Fractured, very permeable rock hosting repositories for radioactive waste will require grouting. New grout types of possible use where long-term performance is needed should have a small amount of cement for minimizing the increase in porosity that will follow from the ultimate dissolution and erosion of this component. They have to be low-viscous and gain strength early after injection and packing theory can assist designers in selecting suitable proportions of various grout components. Optimum particle packing means that the porosity is at minimum and that the amount of cement paste needed to fill the voids between aggregate particles is very small. Low porosity and microstructural stability must be guaranteed for long periods of time. Organic additives for reaching high fluidity cannot be used since they can give off colloids that carry released radionuclides and talc can be an alternative superplasticizer. Low-pH cement reacts with talc to give high strength with time while Portland cement gives early but limited strengthening. The clay mineral palygorskite can be used for early gelation because of its thixotropic properties. Once forced into the rock fractures or channels in soil it stiffens and serves as a filter that prevents fine particles to migrate through it be lost. However, its hydrophilic potential is too high to give the grout a high density and high strength. According to the experiments carried out most of the investigated grouts are injectable in fractures with apertures down to 100 μm.
  •  
10.
  • Hatem, Mohammed, et al. (författare)
  • Rheological Properties of Cement-Based Grouts Determined by Different Techniques
  • 2014
  • Ingår i: Engineering. - : Scientific Research Publishing, Inc.. - 1947-3931 .- 1947-394X. ; 6:5, s. 217-229
  • Tidskriftsartikel (refereegranskat)abstract
    • The rheological properties of cement-based grouts containing talc or palygorskite were investigated for optimizing fluidity and quick strengthening at injection. The fluidity controls the ability of grout to penetrate fractures and can be determined by pipe flow tests, Marsh funnel tests, mini-slump cone tests and rheometer tests. The grouts were 1) Talc for fluidity and strength by reacting with cement, 2) Palygorskite (attapulgite) for early gelation by being thixotropic, and 3) Powdered quartz for chemical integrity. The freshly prepared grouts behaved as Bingham fluids with viscosities from 0.151 to 0.464 Pas and yield stresses 5.2 Pa to 36.7 Pa. Statistical analysis of the flow test data converted Marsh flow time into viscosity. The pipe flow tests gave 26.5% higher values than the viscometer for grout with Portland cement and talc, and about 13.7% lower than the viscometer data for the grout with low-pH cement and talc. The big Marsh funnel gave valuesdiffering by 5.2% - 5.3% from those of the viscometer for grout with talc and Portland, and Merit 5000 cements. For grout with palygorskite the viscosity was at least twice that of the other grouts. Grout fluidity was positively affected by talc and negatively by palygorskite and early cement hydration
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 21

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy