SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "hsv:(TEKNIK OCH TEKNOLOGIER) hsv:(Samhällsbyggnadsteknik) hsv:(Miljöanalys och bygginformationsteknik) ;pers:(Gustavsson Leif)"

Sökning: hsv:(TEKNIK OCH TEKNOLOGIER) hsv:(Samhällsbyggnadsteknik) hsv:(Miljöanalys och bygginformationsteknik) > Gustavsson Leif

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dodoo, Ambrose, 1979-, et al. (författare)
  • Climate impacts of wood vs. non-wood buildings
  • 2016
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • This report documents the findings of a project commissioned by the SwedishAssociation of Local Authorities and Regions on energy and climateimplications of building structural-frame materials from a life cycle perspective.The report is compiled by researchers within the Sustainable Built EnvironmentGroup (SBER) at Linnaeus University, Växjö, Sweden, and it addresses theterms of reference of the project agreement, including review of existingliterature and reports on energy and climate implications of wood-frame andnon-wood-frame building systems.The report’s primarily focus is: the effect of material choice on different lifecycle stages of a building; the significance of building frame material in relationto the total primary energy use and climate impact of a building; keymethodological issues linked to life cycle analysis of buildings; and theimportance of system perspective in analysis of a building’s climate impacts.
  •  
2.
  •  
3.
  •  
4.
  • Gustavsson, Leif, 1954-, et al. (författare)
  • Implementering av energieffektiviseringsåtgärder i befintlig bebyggelse : Report prepared for the Swedish Energy Agency
  • 2010
  • Rapport (populärvet., debatt m.m.)abstract
    • There is great potential to improve energy efficiency in existing Swedish residential buildings. However, the successful implementation of efficiency measures depends on economical and technical factors, as well as on the attitudes and perceptions of the relevant actors. A better understanding of their attitudes and perceptions may influence the design of suitable policy measures that increase the adoption of energy efficiency measures. In this context, we conducted mail-in surveys completed by owners of detached houses, chairmen of co-operative housing associations (bostadsrättsförening) and municipality energy advisers in Sweden. We also interviewed window sellers/installers in Jämtland.Results show that it was important for the majority of homeowners to reduce their household energy use, with most undertaking no-cost measures (e.g., switching off lights). However, 70–90% of the responding homeowners had no intention of adopting building envelope measures over the next 10 years. The main reason for non-adoption was that homeowners were satisfied with the physical condition and thermal performance of their existing building envelope components. Homeowners who thought their energy cost was high were more likely to adopt an investment measure compared to those who thought their energy cost was low. Investment costs and annual energy cost savings were the most important factors in adoption of energy efficient building envelope measures. Therefore, economic incentives may induce homeowners to adopt energy efficiency investment measures. However, a large percentage (64%) of homeowners was unaware of the existence of government support for reducing household energy use. Information campaigns announcing the availability of economic incentives and the cost advantages of energy efficiency measures may be helpful in the adoption decision.Homeowners‘ considered interpersonal sources, builders, installers and energy advisers as important sources of information for their adoption of energy efficiency measures. Though a large percentage of respondents considered energy advisers as an important source of information, only 14% of homeowners had contacted an energy adviser in the past. Our findings suggest that the energy advice service is important for homeowners, but more efforts are needed to increase homeowners‘ awareness of and satisfaction with such services. The majority of municipal energy advisers were of the opinion that more training in technical aspects of energy issues and increased financial support could improve their performance.Installers and material suppliers are important actors in homeowners‘ adoption of energy efficiency measures. For example, approximately 53% of responding homeowners to a survey in Jämtland/Västernorrland stated that the window seller/installer from whom they had bought windows had recommended a particular type of window, and 97% had installed the windows that were recommended. The window sellers/installers in Jämtland prefer a window that is ―reasonably‖ energy efficient. They believe that windows with a U-value of 1.2 W/m2K are good and there is no reason to further improve the energy efficiency. The majority did not recommend windows with U-value <1.2 W/m2K. They were concerned about the condensation issues and high prices of such windows. This may influence the diffusion of very energy efficient windows in Swedish detached houses.About 80-95% of chairmen in co-operative housing associations who responded to our survey had no intention of adopting building envelope measures over the next 10 years. They were satisfied with the existing building envelope components, which may be one of the reasons for this lack of intention. As in the case of owners of detached houses, economic factors, like annual energy cost savings and investment costs, guide the implementation of energy efficiency investment measures in co-operative housing associations. However, about 66% of the responding chairmen did not consider financial constraint as a barrier to implementing investment intensive energy efficiency measures. For 54% of the respondents limited in-house competency to evaluate the benefits of energy efficiency measures was the main barrier.The majority of owners of detached houses (80%) and chairmen of co-operative housing associations (70%) perceived that economic policy instruments, such as investment subsidies and tax deductions, would encourage them to implement energy efficiency measures. Other policy instruments, especially information instruments, were perceived as less effective. Among various information policies, increasing the frequency of meter reading received the highest approval with 38% of homeowners, whereas approximately 41% of housing association chairmen thought that individual metering of heating and hot water use could be effective. Approximately 30% of homeowners and housing association chairmen thought that energy declaration was effective.
  •  
5.
  •  
6.
  • Nair, Gireesh, 1973-, et al. (författare)
  • Adoption of energy efficiency measures in swedish detatched houses
  • 2009
  • Ingår i: International Scientific Conference on Energy systems with IT, March 11-12, in connection with 'Energitiget 2009', Stockholm, Sweden.
  • Konferensbidrag (refereegranskat)abstract
    • The paper focuses on Swedish homeowners’ need for and perceptions about adopting building envelop energy efficiency measures such as improved windows and attic and wall insulation. The results of a questionnaire surveying 3000 randomly selected homeowners during the summer of 2008 revealed that about 70-90% of the respondents had no intention of implementing such a measure over the next 10 years. The main reasons for non-adoption were that homeowners were satisfied with the physical condition, thermal performance, and aesthetics of their existing installations. A greater proportion of respondents perceived that improving attic insulation has more advantages than other measures, but windows were more likely to be installed than attic insulation was to be improved. Respondents gave high priority to economic factors in deciding on an energy efficiency measure, while environmental aspects were given lower priority. Hence, economic incentives could be useful in promoting the adoption of building envelope energy efficiency measures. Interpersonal sources, construction companies/installers, and energy advisers were important sources of information for homeowners as they planned to install energy efficiency measures.
  •  
7.
  • Nair, Gireesh, et al. (författare)
  • Implementation of energy efficient windows in Swedish single-family houses
  • 2012
  • Ingår i: Applied Energy. - : Elsevier. - 0306-2619 .- 1872-9118. ; 89:1, s. 329-338
  • Tidskriftsartikel (refereegranskat)abstract
    • A questionnaire survey of 1010 homeowners in Jämtland and Västernorrland, which are two counties in central Sweden, was conducted to understand the factors influencing their decision to install energy-efficient windows. We complemented this survey with an interview of 12 window sellers/installers in the county Jämtland. The annual energy cost reduction, age, and condition of the windows were the most important reasons for the window replacement decision. Approximately 80% of the respondents replaced their windows with energy-efficient windows with U-value of 1.2 W/m2 K. Condensation problems, perceived higher prices, and lack of awareness about windows with lower U-values were important reasons for non-adoption of more energy-efficient windows. Window sellers/installers have a strong influence on homeowners’ window selection that was indicated by the 97% of homeowners who bought the windows that were recommended to them. Sellers/installers revealed that they did not recommend windows with U-value of less than 1.2 W/m2 K because they thought that investing in such windows was not economical and because windows with U-value less than 1.2 W/m2 K could cause water condensation on the external surface of window pane.
  •  
8.
  • Piccardo, Chiara, et al. (författare)
  • Retrofitting with different building materials : life-cycle primary energy implications
  • 2020
  • Ingår i: Energy. - : Elsevier. - 0360-5442 .- 1873-6785. ; 192, s. 1-13
  • Tidskriftsartikel (refereegranskat)abstract
    • The energy retrofitting of existing buildings reduces the energy use in the operation phase but the use ofadditional materials influence the energy use in other life cycle phases of retrofitted buildings. In thisstudy, we analyse the life cycle primary energy implications of different material alternatives whenretrofitting an existing building to meet high energy performance levels. We design retrofitting optionsassuming the highest and lowest value offinal energy use, respectively, for passive house standardsapplicable in Sweden. The retrofitting options include the thermal improvement of the building enve-lope. We calculate the primary energy use in the operation phase (operation primary energy), as well asin production, maintenance and end-of-life phases (non-operation primary energy). Our results showthat the non-operation primary energy use can vary significantly depending on the choice of materialsfor thermal insulation, cladding systems and windows. Although the operation energy use decreases by63e78%, wefind that the non-operation energy for building retrofitting accounts for up to 21% of theoperation energy saving, depending on the passive house performance level and the material alternative.A careful selection of building materials can reduce the non-operation primary energy by up to 40%,especially when using wood-based materials
  •  
9.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy