SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "hsv:(TEKNIK OCH TEKNOLOGIER) hsv:(Samhällsbyggnadsteknik) hsv:(Miljöanalys och bygginformationsteknik) ;pers:(Kono Jun 1987)"

Sökning: hsv:(TEKNIK OCH TEKNOLOGIER) hsv:(Samhällsbyggnadsteknik) hsv:(Miljöanalys och bygginformationsteknik) > Kono Jun 1987

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andersson, Martin, 1988, et al. (författare)
  • Abatement cost of embodied emissions of a residential building in Sweden
  • 2018
  • Ingår i: Energy and Buildings. - : Elsevier BV. - 0378-7788. ; 158, s. 595-604
  • Tidskriftsartikel (refereegranskat)abstract
    • In 2010, the world’s buildings accounted for approximately 19% of all greenhouse gas emissions. These emissions stem from both the construction and operation of buildings. In recent years the carbon efficiency of energy sources and energy efficiency of new buildings has been improved in Sweden. Therefore, embodied emissions accounts for an increasing share of the life cycle emissions of new buildings. This study aims to asses the cost effectiveness in abatement of embodied emissions. This was done by assessing the embodied emissions of a case building and several conventional design measures along with the implication on production cost. It was found that many of the measures enabled cost effective carbon abatement. Embodied emissions could be reduced by 15% using cost neutral or nearly cost neutral measures. Abatements up to 18% were found cost effective in relation to abatement of carbon dioxide emissions in other sectors. Abatements up to 24% were possible with minor increases in total production cost (0.22%) even though some of the individual measures were found expensive in relation to abatement of carbon dioxide emissions in other sectors. Some measures entailed increased floor area that could potentially lead to economic gain where exterior area is a limiting factor. Acoustic requirements were found to be a limiting factor in abatement of embodied emissions.
  •  
2.
  • Salzer, Corinna, 1984, et al. (författare)
  • Environmental performance of social housing in emerging economies: life cycle assessment of conventional and alternative construction methods in the Philippines
  • 2017
  • Ingår i: International Journal of Life Cycle Assessment. - : Springer Science and Business Media LLC. - 1614-7502 .- 0948-3349. ; 22:11, s. 1785-1801
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose The environmental impact of the social buildingstock is relevant, particularly in emerging economies. Life cycle thinking is not yet established, however. Locally available, alternative building concepts could potentially reduce the environmental impact of the construction segment. This paper examines the environmental performance of Bas-built low-cost housing for an example of the Philippines, and the potential to reduce its environmental impact through use of three alternative building technologies: cement–bamboo frames, soil–cement blocks, and coconut board-based housing.Methods Life cycle assessment models are implemented andevaluated with software SimaPro, using the single-impact indicators global warming potential (GWP) and cumulative energy demand (CED) and the multi-impact indicator Impact2002+. According to EN 15978, the life cycle phase product and construction process (A), use stage (B), end-of-life (C) and supplementary information beyond the building life cycle (D) have been assessed. Theoretically calculated inflows from standard construction procedures used in phase A have been verified with 3 years of empirical data from implemented construction projects. For phases B, C and D, attention was given to servicelife, use-phase, allocation of waste products, biogenic carbon and land-use assumptions. Scenarios reflect the actual situation in the emerging economy. Processes, such as heat recovery from thermal utilization, which are not existing nor near to implementation, were excluded.Results and discussion For an assessment of the phases A–B–C–D with GWP, a 35% reduction of environmental impact for soil–cement blocks, 74%for cement–bamboo frame, and 83% for coconut board-based houses is obtained relative to a concrete reference house. In absolute terms, this relates to a reduction of 4.4, 9.3, and 10.3 t CO2 equivalents over a service life of 25 years. CED showed higher impacts for the biogenic construction methods coconut board and cement–bamboo frames of +8.0 and +4.7%, while the soil–cement technology was evaluated −7.1% compared to GWP. Sixteen of 17 midpoint categories of Impact2002+ confirmed an overall reduction potential of the alternative building methods, with the midpoint category land occupation being the exception rating the conventional practice over the alternatives.Conclusions It is concluded that the alternative construction technologies have substantial potential to reduce the environmental burden caused by the social housing sector. The service life of the alternative technologies plays a vital role for it. LCA for emerging economies needs to incorporate realistic scenarios applicable at their current state or belonging to the most probable alternatives to ensure valuable results.Recommendations for further research are provided.
  •  
3.
  • Kono, Jun, 1987, et al. (författare)
  • Factors for Eco-Efficiency Improvement of Thermal Insulation Materials
  • 2016
  • Ingår i: Key Engineering Materials. - 1013-9826 .- 1662-9795. ; 678, s. 1-13
  • Tidskriftsartikel (refereegranskat)abstract
    • Thermal insulation material is an important component to reduce the environmental impact of buildings through the reduction of energy consumption in the operation phase. However, the material itself has embodied environmental impacts for the value it provides. Eco-efficiency is a method that quantifies relation between the environmental performance and the created value of a product system. This study investigated contributing factors of the eco-efficiency of thermal insulation materials to support decision making of material manufacturers. For the improvement of eco-efficiency, the assessment was made in two scopes: investigating the contributing factors of impact caused at production processes; and thermal performance through thermo-physical properties. For quantifying environmental impacts, cradle-to-grave life cycle assessment (LCA) of each materials were made. The life cycle impact assessment (LCIA) indicators used were ReCiPe H/A and global warming potential (GWP100a). For the assessment of production process, the inventories of the materials were assigned to six categories: heat, chemicals, electricity, transportation, raw materials and wastes. Among the assessed materials, contribution of electricity and heat within the production process was large for foam glass which had the highest potential to improve the eco-efficiency which was by factor 1.72. The analysis on relation between thermo-physical properties and eco-efficiency based on product data of the materials highlighted the importance of density as an indicator upon development and use. Although density often gains less attention, the finding suggested the effectiveness of improving the efficiency by having lower density without compensating the performance of the materials.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy