SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "hsv:(TEKNIK OCH TEKNOLOGIER) hsv:(Samhällsbyggnadsteknik) hsv:(Vattenteknik) ;lar1:(hkr)"

Sökning: hsv:(TEKNIK OCH TEKNOLOGIER) hsv:(Samhällsbyggnadsteknik) hsv:(Vattenteknik) > Högskolan Kristianstad

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Betsholtz, Alexander, et al. (författare)
  • New Perspectives on the Interactions between Adsorption and Degradation of Organic Micropollutants in Granular Activated Carbon Filters
  • 2024
  • Ingår i: Environmental Science and Technology. - : American Chemical Society. - 0013-936X .- 1520-5851. ; 58:26, s. 11771-11780
  • Tidskriftsartikel (refereegranskat)abstract
    • The removal of organic micropollutants in granular activated carbon (GAC) filters can be attributed to adsorption and biological degradation. These two processes can interact with each other or proceed independently. To illustrate the differences in their interaction, three 14C-labeled organic micropollutants with varying potentials for adsorption and biodegradation were selected to study their adsorption and biodegradation in columns with adsorbing (GAC) and non-adsorbing (sand) filter media. Using 14CO2 formation as a marker for biodegradation, we demonstrated that the biodegradation of poorly adsorbing N-nitrosodimethylamine (NDMA) was more sensitive to changes in the empty bed contact time (EBCT) compared with that of moderately adsorbing diclofenac. Further, diclofenac that had adsorbed under anoxic conditions could be degraded when molecular oxygen became available, and substantial biodegradation (≥60%) of diclofenac could be achieved with a 15 min EBCT in the GAC filter. These findings suggest that the retention of micropollutants in GAC filters, by prolonging the micropollutant residence time through adsorption, can enable longer time periods for degradations than what the hydraulic retention time would allow for. For the biologically recalcitrant compound carbamazepine, differences in breakthrough between the 14C-labeled and nonradiolabeled compounds revealed a substantial retention via successive adsorption-desorption, which could pose a potential challenge in the interpretation of GAC filter performance.
  •  
2.
  • Betsholtz, Alexander, et al. (författare)
  • Tracking 14C-Labeled Organic Micropollutants to Differentiate between Adsorption and Degradation in GAC and Biofilm Processes
  • 2021
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 55:16, s. 11318-11327
  • Tidskriftsartikel (refereegranskat)abstract
    • Granular activated carbon (GAC) filters can be used to reduce emissions of organic micropollutants via municipal wastewater, but it is still uncertain to which extent biological degradation contributes to their removal in GAC filters. 14C-labeled organic micropollutants were therefore used to distinguish degradation from adsorption in a GAC-filter media with associated biofilm. The rates and extents of biological degradation and adsorption were investigated and compared with other biofilm systems, including a moving bed biofilm reactor (MBBR) and a sand filter, by monitoring 14C activities in the liquid and gas phases. The microbial cleavage of ibuprofen, naproxen, diclofenac, and mecoprop was confirmed for all biofilms, based on the formation of 14CO2, whereas the degradation of 14C-labeled moieties of sulfamethoxazole and carbamazepine was undetected. Higher degradation rates for diclofenac were observed for the GAC-filter media than for the other biofilms. Degradation of previously adsorbed diclofenac onto GAC could be confirmed by the anaerobic adsorption and subsequent aerobic degradation by the GAC-bound biofilm. This study demonstrates the potential use of 14C-labeled micropollutants to study interactions and determine the relative contributions of adsorption and degradation in GAC-based treatment systems.
  •  
3.
  • Bodin, Hristina, et al. (författare)
  • Attenuation of pharmaceutical substances : phytoremediation using constructed wetlands
  • 2018
  • Ingår i: 13th Society of Wetland Scientists (SWS) Europe Chapter Meeting. ; , s. 19-22
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Introduction: Currently, wastewater treatment plants (WWTPs) do not efficiently remove pharmaceutical substances (PS). Thus, such substances are now frequently found in aquatic ecosystems worldwide. Also, concentrations of some PS in treated effluents exceed Environmental Quality Standards proposed by EU legislation. One resource-efficient option for increasing PS removal in WWTP effluents is to use constructed wetlands (CWs) as an attenuation step (Breitholtz et al. 2012; Li et al. 2014). However, very little research has been done on how to maximize the PS attenuation capacity of CWs. Therefore, a project with the aim to investigate reduction of different pharmaceutical substances in CWs with different vegetation compositions and water depths, was performed at the Experimental Wetland Area (EVA) located 20 km north of Halmstad, Sweden.
  •  
4.
  • Burzio, Cecilia, 1991, et al. (författare)
  • Removal of organic micropollutants from municipal wastewater by aerobic granular sludge and conventional activated sludge
  • 2022
  • Ingår i: Journal of Hazardous Materials. - : Elsevier BV. - 1873-3336 .- 0304-3894. ; 438
  • Tidskriftsartikel (refereegranskat)abstract
    • Removal performances of organic micropollutants by conventional activated sludge (CAS) and aerobic granular sludge (AGS) were investigated at a full-scale wastewater treatment plant. Lab-scale kinetic experiments were performed to assess the micropollutant transformation rates under oxic and anoxic conditions. Transformation rates were used to model the micropollutant removal in the full-scale processes. Metagenomic sequencing was used to compare the microbial communities and antimicrobial resistance genes of the CAS and AGS systems. Higher transformation ability was observed for CAS compared to AGS for most compounds, both at the full-scale plant and in the complementary batch experiments. Oxic conditions supported the transformation of several micropollutants with faster and/or comparable rates compared to anoxic conditions. The estimated transformation rates from batch experiments adequately predicted the removal for most micropollutants in the full-scale processes. While the compositions in microbial communities differed between AGS and CAS, the full-scale biological reactors shared similar resistome profiles. Even though granular biomass showed lower potential for micropollutant transformation, AGS systems had somewhat higher gene cluster diversity compared to CAS, which could be related to a higher functional diversity. Micropollutant exposure to biomass or mass transfer limitations, therefore played more important roles in the observed differences in OMP removal.
  •  
5.
  • Punzi, Marisa, et al. (författare)
  • Combined anaerobic-ozonation process for treatment of textile wastewater : Removal of acute toxicity and mutagenicity
  • 2015
  • Ingår i: Journal of Hazardous Materials. - : Elsevier BV. - 0304-3894 .- 1873-3336. ; 292, s. 52-60
  • Tidskriftsartikel (refereegranskat)abstract
    • A novel set up composed of an anaerobic biofilm reactor followed by ozonation was used for treatment of artificial and real textile effluents containing azo dyes. The biological treatment efficiently removed chemical oxygen demand and color. Ozonation further reduced the organic content of the effluents and was very important for the degradation of aromatic compounds, as shown by the reduction of UV absorbance. The acute toxicity toward Vibrio fischeri and the shrimp Artemia salina increased after the biological treatment. No toxicity was detected after ozonation with the exception of the synthetic effluent containing the highest concentration, 1. g/l, of the azo dye Remazol Red. Both untreated and biologically treated textile effluents were found to have mutagenic effects. The mutagenicity increased even further after 1. min of ozonation. No mutagenicity was however detected in the effluents subjected to longer exposure to ozone. The results of this study suggest that the use of ozonation as short post-treatment after a biological process can be beneficial for the degradation of recalcitrant compounds and the removal of toxicity of textile wastewater. However, monitoring of toxicity and especially mutagenicity is crucial and should always be used to assess the success of a treatment strategy. © 2015 Elsevier B.V.
  •  
6.
  • Stedt, Kristoffer, 1991, et al. (författare)
  • Post-harvest cultivation with seafood process waters improves protein levels of Ulva fenestrata while retaining important food sensory attributes
  • 2022
  • Ingår i: Frontiers in Marine Science. - : Frontiers Media SA. - 2296-7745.
  • Tidskriftsartikel (refereegranskat)abstract
    • Seaweed aquaculture can provide the growing human population with a sustainable source of proteins. Sea-based cultivation is an effective method for farming seaweeds on a large scale and can yield high biomass output. However, the quality and biochemical composition of the biomass is seasonally dependent, which limits the harvests to certain periods of the year. Here we show the possibility to extend the sea-based cultivation season of Ulva fenestrata when aiming for high protein levels, by post-harvest treatment in herring production process waters. We harvested U. fenestrata at an optimal period in terms of yield, but suboptimal in terms of protein content. We then cultivated the seaweed in onshore tank systems with the nutrient-rich process waters for 14 days. We monitored biomass yield, crude protein content, amino acid composition, and content of the health concerning metals arsenic, mercury, lead, and cadmium, as well as the sensory properties of the dried biomass. After cultivation in the process waters, biomass yields were 30 - 40% higher (210 – 230 g fresh weight) compared to in seawater (160 g fresh weight). Also, the crude protein and amino acid content increased three to five times in the process waters, reaching 12 - 17 and 15 – 21% dry weight, respectively. The protein enriched biomass followed food graded standards for heavy metal content, and consumption of the biomass does not exceed health based reference points. Additionally, no sensory attributes regarded as negative were found. This rapid, post-harvest treatment can help extend the cultivation season of sea-based seaweed farms, maximizing their output of sustainable proteins.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy