SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "hsv:(TEKNIK OCH TEKNOLOGIER) hsv:(Maskinteknik) srt2:(2020)"

Sökning: hsv:(TEKNIK OCH TEKNOLOGIER) hsv:(Maskinteknik) > (2020)

  • Resultat 1-10 av 2566
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Okda, Sherif, et al. (författare)
  • Testing of the Aerodynamic Characteristics of an Inflatable Airfoil Section
  • 2020
  • Ingår i: Journal of Aerospace Engineering. - 1943-5525 .- 0893-1321. ; 33:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Inflatable structures are characterized by being light and easy to manufacture and deploy. Hence, they find many applications in aerospace and aeronautical engineering. In this paper, an inflatable segment with a The National Advisory Committee for Aeronautics (NACA) 0021 airfoil cross-section is designed, fabricated, and tested. The geometrical accuracy of the manufactured inflatable segment is measured using laser scanning. Measurements show that the average normalized error of the chord length and thickness are 2.97% and 0.554%, respectively. The aerodynamic behavior of the inflatable segment is then tested in a wind tunnel at different wind speeds and angles of attack. Lift forces are measured using a six-component balance, while the drag forces are calculated from the wake measurements. The lift and drag coefficients of the inflatable section are compared to those of a standard NACA 0021 airfoil. Finally, flow visualization is examined at different angles of attack using two methods: smoke and tufts. Both methods show that flow separation starts at 15° and full stall occurs at 25°. Results indicate that inflatables can find more applications in the design and construction of aerodynamic structures, such as wings.
  •  
2.
  • Hadadpour, Ahmad (författare)
  • Spray combustion with multiple-injection in modern engine conditions
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Combustion of fuel in diesel engines emits substances harmful to the environment such as soot. These emissions can be reduced by either in-cylinder treatments or after-treatments. One of the common in-cylinder treatments is multiple-injection, which divides a single fuel injection to multiple smaller injections. There are many open questions on the physical processes of the ignition, combustion and emissions of diesel spray flame with multiple injections. The current PhD project aims at studying these processes using large-eddy simulations (LES) and strives to answer some of the open questions. To develop a fast and robust LES tool for this study, a new method is formulated for spray combustion simulation. This method is developed based on the flamelet-generated manifold (FGM) method and the Eulerian stochastic fields (ESF) method. The new ESF/FGM method relaxes some of the substantial assumptions in conventional FGM, while it still keeps the computational costs at a reasonable level for engineering applications. Additionally in this work, a new reaction progress variable for FGM models is proposed by using local oxygen consumption, and the advantages and limitations of this progress variable are explored. Spray-A from Engine Combustion Network (ECN) which is designed to mimic modern engine conditions is chosen as the baseline case for simulations. In this case, liquid n-dodecane, which is a diesel surrogate, is injected into a high-pressure constant-volume vessel. The comparison of simulation results with experimental measurements shows that the ESF/FGM method with the new progress variable can predict the spray combustion characteristics such as ignition delay time, ignition location, lift-off length, pressure rise and thermochemical structure of the spray flame, accurately. After validation of simulation results against experimental measurements, the new ESF/FGM and other available turbulence-combustion simulation tools are applied to simulate multiple-injection spray combustion. Different multiple-injection strategies are investigated by systematically changing the injection timing. The effects of applying each strategy on the ignition, combustion, mixing and emissions are investigated. The results show that in split-injection and post-injection strategies the major physical reason for reduction of soot is better air entrainment and lower local equivalence ratio. It is shown that increasing the dwell time and retarding it toward the end of injection can enhance this effect. On the contrary, for the pre-injection strategies, shortening the ignition delay time of the main injection reduces its pre-mixing and increases its soot formation. In these strategies, the high-temperature region from the pre-injection combustion can increase soot oxidation of the main injection fuel, only if this region is not cooled down as a result of air entrainment during dwell time. Therefore, in such cases shortening the dwell time decreases net soot emissions.
  •  
3.
  • Li, Xiaojian, 1991, et al. (författare)
  • Installation effects on engine design
  • 2020
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Increasing the engine bypass ratio is one way to improve propulsive efficiency. However, an increase in the bypass ratio (BPR) has usually been associated with an increase in the fan diameter. Consequently, there can be a notable increase in the impact of the engine installation on the overall aircraft performance. In order to achieve a better balance between those factors, it requires novel nacelle and engine design concepts. This report mainly reviews installation effects on engine design. Firstly, the installation effects assessment methods are introduced. Then, the installation effects on engine cycle design, intake design and exhaust design are sequentially reviewed.
  •  
4.
  • Stylidis, Kostas, 1978, et al. (författare)
  • Perceived quality of products: a framework and attributes ranking method
  • 2020
  • Ingår i: Journal of Engineering Design. - : Informa UK Limited. - 1466-1837 .- 0954-4828. ; 31:1, s. 37-67
  • Tidskriftsartikel (refereegranskat)abstract
    • Perceived quality is one of the most critical aspects of product development that defines the successful design. This paper presents a new approach to perceived quality assessment by examining its elements, decomposed into a structure with the bottom-up sensory approach from the level of basic (‘ground’) attributes, covering almost every aspect of quality perception from the engineering viewpoint. The paper proposes a novel method for perceived quality attributes relative importance ranking, resulting in the balanced perceived quality of the final product within the given conditions. The proposed method helps to reach the equilibrium of the product’s quality equation from the perspective of design effort, time, and costs estimations. The authors introduce the Perceived Quality Framework (PQF), which is the taxonomy system for perceived quality attributes and the core of the attributes importance ranking (PQAIR) method. The research outcomes are based on findings of the qualitative exploratory study, including European and North American premium and luxury automotive manufacturers. An empirical structural validity test was performed to assess the usability and rigour of the proposed method. The results indicate that perceived quality evaluation can be significantly improved during all stages of product development.
  •  
5.
  • Li, Xiaojian, 1991, et al. (författare)
  • A New Method for Impeller Inlet Design of Supercritical CO2 Centrifugal Compressors in Brayton Cycles
  • 2020
  • Ingår i: Energies. - : MDPI AG. - 1996-1073 .- 1996-1073. ; 13:19
  • Tidskriftsartikel (refereegranskat)abstract
    • Supercritical Carbon Dioxide (SCO2) is considered as a potential working fluid in next generation power and energy systems. The SCO2 Brayton cycle is advantaged with higher cycle efficiency, smaller compression work, and more compact layout, as compared with traditional cycles. When the inlet total condition of the compressor approaches the critical point of the working fluid, the cycle efficiency is further enhanced. However, the flow acceleration near the impeller inducer causes the fluid to enter two-phase region, which may lead to additional aerodynamic losses and flow instability. In this study, a new impeller inlet design method is proposed to achieve a better balance among the cycle efficiency, compressor compactness, and inducer condensation. This approach couples a concept of the maximum swallowing capacity of real gas and a new principle for condensation design. Firstly, the mass flow function of real gas centrifugal compressors is analytically expressed by non-dimensional parameters. An optimal inlet flow angle is derived to achieve the maximum swallowing capacity under a certain inlet relative Mach number, which leads to the minimum energy loss and a more compact geometry for the compressor. Secondly, a new condensation design principle is developed by proposing a novel concept of the two-zone inlet total condition for SCO2 compressors. In this new principle, the acceptable acceleration margin (AAM) is derived as a criterion to limit the impeller inlet condensation. The present inlet design method is validated in the design and simulation of a low-flow-coefficient compressor stage based on the real gas model. The mechanisms of flow accelerations in the impeller inducer, which form low-pressure regions and further produce condensation, are analyzed and clarified under different operating conditions. It is found that the proposed method is efficient to limit the condensation in the impeller inducer, keep the compactness of the compressor, and maintain a high cycle efficiency.
  •  
6.
  • Vieira, Tiago, 1984-, et al. (författare)
  • Evaluation of uncertainty on Shore hardness measurements of tyre treads and implications to tyre/road noise measurements with the Close Proximity method
  • 2020
  • Ingår i: Measurement. - : Elsevier. - 0263-2241 .- 1873-412X. ; 162
  • Tidskriftsartikel (refereegranskat)abstract
    • Shore hardness measurements subject rubber bodies to standardized indentations. While easily performed, the measurements are subject to uncertainties. Although typical variances for Shore hardness are found in standards, operator and instrument effects are not well described, requiring statistically designed experiments to estimate effects and variance components. This paper focuses on uncertainty in Shore A hardness measurements of tyre tread elements and quantifies operator and instrument effects. Evaluation of uncertainty of Shore A measurements were performed on tyres under controlled conditions using three instruments, two tyres and five operators. Results show that the operator variance component and instrument effects are larger than the reference variance contribution in ISO 11819-3:2017. The interaction between operator and instrument is estimated to be the largest source of variation, while operator and instrument main effects are of similar size as the error component. Recommendations to reduce uncertainties include ignoring instantaneous values and requiring an instrument stand.
  •  
7.
  • Korkmaz, Kadir Burak, 1989 (författare)
  • Improved Power Predictions of Ships Using Combined CFD/EFD Methods for the Form Factor
  • 2020
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Performance prediction of a ship is one of the most important tasks during the design phase. Once the design is finalized, the speed attained at a certain power consumption has to be verified with the most accurate prediction as it is specified at the contract of a new ship order and also required by the legal authorities. Considering the current commercial tendencies and the requirements enforced by legal authorities, towing tank testing and the extrapolation methods recommended by the International Towing Tank Conference (ITTC) are used and regarded as a highly accurate power prediction methodology for common cargo vessels. However, some aspects of this methodology have been questioned such as the scale effects on the form factor and its determination method. It is argued in this thesis that if a part of the Experimental Fluid Dynamics (EFD) based measure or the extrapolation procedure causes higher uncertainty than the numerical uncertainty and modelling errors of a Computational Fluid Dynamics (CFD) application, the corresponding part of the performance prediction method can be replaced or supplemented by CFD. In this study, the possibility to improve the power predictions by the introduction of a combined CFD/EFD Method was investigated by replacing the experimental determination of the form factor with double body computations based on the Reynolds-Averaged Navier-Stokes (RANS) equations, i.e. CFD based form factors. As a result of a joint, study where the double body simulations performed with seven different CFD codes, the CFD based form factors compared well with the experimentally determined form factors. Additionally, the standard deviations of the CFD based form factors were similar to the experimental uncertainty of the form factors even though the abundance of unsystematically varied methods and grids. Following the Quality Assurance Procedure proposed by the ITTC, a best practice guideline has been derived for the CFD based form factor determination method by applying systematic variations to the CFD set-ups. After the verification and validation of the CFD based form factor method in model scale, the full scale speed-power-rpm relations between large number of speed trials and full scale predictions were investigated using the CFD based form factors in combination to the ITTC-57 line and the numerical friction lines. It is observed that the usage of CFD based form factors improves the predictions in general and no deterioration in the prediction accuracy is noted within the limits of this study. Therefore, the combination of EFD and CFD is expected to provide immediate improvements to the 1978 ITTC Performance Prediction Method.
  •  
8.
  • Bayani, Mohsen, 1981, et al. (författare)
  • Squeak and rattle prevention by geometric variation management using a two-stage evolutionary optimisation approach
  • 2020
  • Ingår i: ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE).
  • Konferensbidrag (refereegranskat)abstract
    • Squeak and rattle are annoying sounds that often are regarded as the indicators for defects and quality issues by the automotive customers. Among the major causes for the generation of squeak and rattle sounds, geometric variation or tolerance stack-up is a key contributor. In the assembly process, the dimensional variation in critical interfaces for generating squeak and rattle events can be magnified due to tolerance stackup. One provision to manage the tolerance stack-up in these critical interfaces is to optimise the location of connectors between parts in an assembly. Hence, the focus of this work is to prevent squeak and rattle by introducing a geometric variation management approach to be used in the design phase in the automotive industry. The objective is to identify connection configurations that result in minimum variation and deviation in selected measure points from the critical interfaces for squeak and rattle. In this study, a two-stage evolutionary optimisation scheme, based on the genetic algorithm employing the elitism pool, is introduced to fine-tune the connectors’ configuration in an assembly. The objective function was defined as the variation and the deviation in the normal direction and the squeak plane. In the first stage, the location of one-dimensional connectors was found by minimising the objective function in the rattle direction. In the second stage, the best combination of some of the connectors from the first stage was found to define planar fasteners to optimise the objective function both in the rattle direction and the squeak plane. It was shown that by using the proposed two-stage optimisation scheme, the variation and deviation results in critical interfaces for squeak and rattle improved compared to the baseline results.
  •  
9.
  • Ottersten, Martin, 1981 (författare)
  • Numerical investigation of tonal noise sources from centrifugal fan
  • 2020
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Heating, ventilating, and air conditioning systems (HVAC) are today an important part of many people's life. They provide a sufficient amount of airflow with the correct temperature, quality, and humidity. The negative side is the noise it produces. Many improvements have been made in building development to reduce noise from the environment. When so, the noise from the HVAC system becomes clearer. The dominant tonal noise in an HVAC system is produced by the fan. In this work tonal noises produced by a centrifugal fan is investigated to be able to understand the generation mechanism and identify their sources. The approach is to use the hybrid computational aeroacoustics  (CAA) method, that couples a computational fluid dynamics (CFD) method with the Ffowcs Williams and Hawkings (FW-H) acoustic analogy. Recirculating flows, which are responsible for reducing the fan efficiency and increasing the noise generation, are observed between the shroud and the blade trailing edges. It is found that the recirculating flows are associated with the gap between the shroud and the inlet duct. The recirculating flow causes large modeled turbulence kinetic energy (TKE). The TKE is unevenly distributed among the blades due to the unsteady recirculating flow. Moreover, the position of the largest TKE periodically varies among the blades. The period corresponds to approximately 4 times the fan rotation period, it was also found in acoustic measurements. Different pressure distributions among the blades are found and ascribed to the turbulence initializing from the inlet gap. The turbulence develops along the shroud wall and interacts with the blades at their leading edges. The interaction renders uneven surface pressure distributions among the blades as well as significant peak differences. As the distances to the inlet gap and the shroud increases, the difference of the pressure distributions among the blades decays. The wall-pressure fluctuations indicates that the locations of the tonal noise sources agree with the locations of the uneven surface pressure distributions and the significant pressure peaks, which are near the blade leading edges.
  •  
10.
  • Clasén, Kristoffer, 1992, et al. (författare)
  • Investigation of Homogeneous Lean SI Combustion in High Load Operating Conditions
  • 2020
  • Ingår i: SAE Technical Papers. - 400 Commonwealth Drive, Warrendale, PA, United States : SAE International. - 0148-7191 .- 2688-3627. ; 2:4, s. 2051-2066
  • Tidskriftsartikel (refereegranskat)abstract
    • Homogeneous lean combustion (HLC) can be utilized to substantially improve spark ignited (SI) internal combustion engine efficiency. Higher efficiency is vital to enable clean, efficient and affordable propulsion for the next generation light duty vehicles. More research is needed to ensure robustness, fuel efficiency/NOx trade-off and utilization of HLC. Utilization can be improved by expanding the HLC operating window to higher engine torque domains which increases impact on real driving. The authors have earlier assessed boosted HLC operation in a downsized two-litre engine, but it was found that HLC operation could not be achieved above 15 bar NMEP due to instability and knocking combustion. The observation led to the conclusion that there exists a lean load limit. Therefore, further experiments have been conducted in a single cylinder research DISI engine to increase understanding of high load lean operation. HLC is known to suppress end-gas autoignition (knock) by decreasing reactivity and temperatures, but during the experiments knock was observed to be prominent and increasing in severity when engine load was increased despite operating ultra-lean close to lambda 2. Knock is normally mitigated by spark retardation which decreases peak cylinder pressure. However, to maintain stable combustion at lambda = 2 the combustion phasing had to be kept close to TC which resulted in high peak cylinder pressures. Therefore, the combustion event had to be balanced in a window where early combustion promoted knock and late resulted in instability and partial burns. A tumble flap was introduced to increase in-cylinder tumble which reduced knock and improved combustion stability. It could be observed that for most load-points assessed; increased tumble could suppress knock and increase the air-dilution limit which proved beneficial in decreasing the NOx emissions. The highest engine load that could be achieved with highly diluted combustion was 16 bar NMEP.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 2566
Typ av publikation
tidskriftsartikel (1497)
konferensbidrag (656)
doktorsavhandling (128)
licentiatavhandling (78)
rapport (58)
bokkapitel (53)
visa fler...
forskningsöversikt (51)
annan publikation (17)
bok (11)
proceedings (redaktörskap) (7)
patent (7)
samlingsverk (redaktörskap) (3)
visa färre...
Typ av innehåll
refereegranskat (2154)
övrigt vetenskapligt/konstnärligt (393)
populärvet., debatt m.m. (18)
Författare/redaktör
Sundén, Bengt (45)
Schlatter, Philipp (33)
Brandt, Luca (31)
Ji, Xiaoyan (29)
Wang, Lihui (25)
Lu, Xiaohua (23)
visa fler...
Vinuesa, Ricardo (19)
Martin-Torres, Javie ... (19)
Henningson, Dan S. (18)
Syberfeldt, Anna, 19 ... (18)
Söderberg, Rikard, 1 ... (18)
Kyprianidis, Konstan ... (17)
Yan, Jinyue, 1959- (17)
Krajnovic, Sinisa, 1 ... (17)
Thiringer, Torbjörn, ... (16)
Jacobson, Bengt J H, ... (15)
Shi, Yijun (14)
Isaksson, Ola, 1969 (14)
Ringsberg, Jonas, 19 ... (14)
Zorzano, Maria Paz (14)
Bensow, Rickard, 197 ... (13)
Hanifi, Ardeshir, Do ... (12)
Wiktorsson, Magnus, ... (12)
Qu, Xiaobo, 1983 (12)
Laaksonen, Aatto (12)
Panarotto, Massimo, ... (12)
Olofsson, Ulf, 1962- (12)
Asp, Leif, 1966 (12)
Li, Hailong, 1976- (12)
Larsson, Fredrik, 19 ... (11)
Ström, Henrik, 1981 (11)
Örlü, Ramis, 1977- (11)
Rosti, Marco E. (11)
Wärmefjord, Kristina ... (11)
Bruzelius, Fredrik, ... (10)
Kulahci, Murat (10)
Wang, Jin (10)
Harvey, Simon, 1965 (10)
Davidson, Lars, 1957 (10)
Liu, Yujing, 1962 (10)
Archenti, Andreas, 1 ... (10)
Larsson, Roland (10)
Prakash, Braham (10)
Cervantes, Michel (10)
Ng, Amos H. C., 1970 ... (10)
Hellström, J. Gunnar ... (10)
Johansson, Björn, 19 ... (10)
Yao, Huadong, 1982 (10)
Fasth Berglund, Åsa, ... (10)
Duwig, Christophe (10)
visa färre...
Lärosäte
Chalmers tekniska högskola (860)
Kungliga Tekniska Högskolan (617)
Luleå tekniska universitet (356)
Lunds universitet (227)
Mälardalens universitet (126)
RISE (95)
visa fler...
Linköpings universitet (92)
Uppsala universitet (83)
Jönköping University (51)
Högskolan i Skövde (51)
Umeå universitet (46)
Göteborgs universitet (45)
Linnéuniversitetet (45)
Blekinge Tekniska Högskola (39)
VTI - Statens väg- och transportforskningsinstitut (38)
Högskolan Dalarna (35)
Stockholms universitet (29)
Högskolan i Gävle (28)
Högskolan i Halmstad (23)
Mittuniversitetet (21)
Karlstads universitet (19)
Högskolan Väst (15)
Sveriges Lantbruksuniversitet (15)
Örebro universitet (14)
Malmö universitet (13)
Karolinska Institutet (11)
Högskolan i Borås (8)
Handelshögskolan i Stockholm (5)
Försvarshögskolan (4)
IVL Svenska Miljöinstitutet (3)
Södertörns högskola (2)
visa färre...
Språk
Engelska (2518)
Svenska (41)
Kinesiska (4)
Tyska (2)
Norska (1)
Forskningsämne (UKÄ/SCB)
Teknik (2566)
Naturvetenskap (344)
Samhällsvetenskap (164)
Medicin och hälsovetenskap (42)
Humaniora (18)
Lantbruksvetenskap (10)
År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy