SwePub
Sök i LIBRIS databas

  Utökad sökning

id:"swepub:oai:DiVA.org:his-18500"
 

Sökning: id:"swepub:oai:DiVA.org:his-18500" > Using Machine Learn...

Using Machine Learning for Robust Target Prediction in a Basic Oxygen Furnace System

Bae, Juhee (författare)
Högskolan i Skövde,Institutionen för informationsteknologi,Forskningsmiljön Informationsteknologi,Skövde Artificial Intelligence Lab (SAIL)
Li, Yurong (författare)
Högskolan i Skövde,Institutionen för informationsteknologi,Forskningsmiljön Informationsteknologi,Skövde Artificial Intelligence Lab (SAIL)
Ståhl, Niclas, 1990- (författare)
Högskolan i Skövde,Institutionen för informationsteknologi,Forskningsmiljön Informationsteknologi,Skövde Artificial Intelligence Lab (SAIL)
visa fler...
Mathiason, Gunnar (författare)
Högskolan i Skövde,Institutionen för informationsteknologi,Forskningsmiljön Informationsteknologi,Skövde Artificial Intelligence Lab (SAIL)
Kojola, Niklas (författare)
Group function R&I, SSAB, Stockholm, Sweden
visa färre...
 (creator_code:org_t)
2020-05-29
2020
Engelska.
Ingår i: Metallurgical and materials transactions. B, process metallurgy and materials processing science. - : Springer. - 1073-5615 .- 1543-1916. ; 51:4, s. 1632-1645
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • The steel-making process in a Basic Oxygen Furnace (BOF) must meet a combination of target values such as the final melt temperature and upper limits of the carbon and phosphorus content of the final melt with minimum material loss. An optimal blow end time (cut-off point), where these targets are met, often relies on the experience and skill of the operators who control the process, using both collected sensor readings and an implicit understanding of how the process develops. If the precision of hitting the optimal cut-off point can be improved, this immediately increases productivity as well as material and energy efficiency, thus decreasing environmental impact and cost. We examine the usage of standard machine learning models to predict the end-point targets using a full production dataset. Various causes of prediction uncertainty are explored and isolated using a combination of raw data and engineered features. In this study, we reach robust temperature, carbon, and phosphorus prediction hit rates of 88, 92, and 89 pct, respectively, using a large production dataset. © 2020, The Author(s).

Ämnesord

TEKNIK OCH TEKNOLOGIER  -- Materialteknik -- Metallurgi och metalliska material (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Materials Engineering -- Metallurgy and Metallic Materials (hsv//eng)
NATURVETENSKAP  -- Data- och informationsvetenskap -- Datavetenskap (hsv//swe)
NATURAL SCIENCES  -- Computer and Information Sciences -- Computer Sciences (hsv//eng)
NATURVETENSKAP  -- Data- och informationsvetenskap (hsv//swe)
NATURAL SCIENCES  -- Computer and Information Sciences (hsv//eng)

Nyckelord

Steelmaking
Basic oxygen converters
BOF steelmaking
Skövde Artificial Intelligence Lab (SAIL)
Skövde Artificial Intelligence Lab (SAIL)

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy