SwePub
Sök i LIBRIS databas

  Utökad sökning

id:"swepub:oai:DiVA.org:hj-64584"
 

Sökning: id:"swepub:oai:DiVA.org:hj-64584" > A DIVERGENCE PRESER...

A DIVERGENCE PRESERVING CUT FINITE ELEMENT METHOD FOR DARCY FLOW

Frachon, T. (författare)
Department of Mathematics, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden
Hansbo, Peter (författare)
Jönköping University,JTH, Material och tillverkning
Nilsson, E. (författare)
Department of Mathematics, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden
visa fler...
Zahedi, S. (författare)
Department of Mathematics, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden
visa färre...
 (creator_code:org_t)
Society for Industrial and Applied Mathematics Publications, 2024
2024
Engelska.
Ingår i: SIAM Journal on Scientific Computing. - : Society for Industrial and Applied Mathematics Publications. - 1064-8275 .- 1095-7197. ; 46:3, s. A1793-A1820
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • We study cut finite element discretizations of a Darcy interface problem based on the mixed finite element pairs RTk \times Qk, k \geq 0. Here Qk is the space of discontinuous polynomial functions of degree less than or equal to k and RT is the Raviart-Thomas space. We show that the standard ghost penalty stabilization, often added in the weak forms of cut finite element methods for stability and control of the condition number of the resulting linear system matrix, destroys the divergence-free property of the considered element pairs. Therefore, we propose new stabilization terms for the pressure and show that we recover the optimal approximation of the divergence without losing control of the condition number of the linear system matrix. We prove that with the new stabilization term the proposed cut finite element discretization results in pointwise divergence-free approximations of solenoidal velocity fields. We derive a priori error estimates for the proposed unfitted finite element discretization based on RTk \times Qk, k \geq 0. In addition, by decomposing the computational mesh into macroelements and applying ghost penalty terms only on interior edges of macroelements, stabilization is applied very restrictively and active only where needed. Numerical experiments with element pairs RT0 \times Q0, RT1 \times Q1, and BDM1 \times Q0 (where BDM is the Brezzi-Douglas-Marini space) indicate that with the new method we have (1) optimal rates of convergence of the approximate velocity and pressure; (2) well-posed linear systems where the condition number of the system matrix scales as it does for fitted finite element discretizations; (3) optimal rates of convergence of the approximate divergence with pointwise divergence-free approximations of solenoidal velocity fields. All three properties hold independently of how the interface is positioned relative to the computational mesh.

Ämnesord

NATURVETENSKAP  -- Matematik -- Beräkningsmatematik (hsv//swe)
NATURAL SCIENCES  -- Mathematics -- Computational Mathematics (hsv//eng)

Nyckelord

cut elements
Darcy's law
interface problem
mass conservation
mixed finite element methods
unfitted
Convergence of numerical methods
Finite element method
Flow of fluids
Linear systems
Matrix algebra
Mesh generation
Number theory
Solenoids
Condition numbers
Cut element
Darcy law
Divergence free
Finite-element discretization
Interface problems
System matrix
Stabilization

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Hitta mer i SwePub

Av författaren/redakt...
Frachon, T.
Hansbo, Peter
Nilsson, E.
Zahedi, S.
Om ämnet
NATURVETENSKAP
NATURVETENSKAP
och Matematik
och Beräkningsmatema ...
Artiklar i publikationen
SIAM Journal on ...
Av lärosätet
Jönköping University

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy