SwePub
Sök i LIBRIS databas

  Utökad sökning

id:"swepub:oai:DiVA.org:kth-12235"
 

Sökning: id:"swepub:oai:DiVA.org:kth-12235" > Creep modelling of ...

Creep modelling of particle strengthened steels

Magnusson, Hans, 1979- (författare)
KTH,Materialteknologi,Brinell Center - Oorganiska gränsskikt, BRIIE
Sandström, Rolf, Professor (preses)
KTH,Materialteknologi
Blum, Wolfgang, Professor (opponent)
Univ Erlangen Nurnberg, Inst Werkstoffwissensch, D-91058 Erlangen, Germany 2. Max Planck Inst Eisenforsch GmbH, D-40237 Dusseldorf, Germany
 (creator_code:org_t)
ISBN 9789174155907
Stockholm : KTH, 2010
Engelska 48 s.
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)
Abstract Ämnesord
Stäng  
  • Materials used in thermal power plants have to resist creep deformation for time periods up to 30 years. Material evaluation is typically based on creep testing with a maximum duration of a few years. This information is used as input when empirically deriving models for creep. These kinds of models are of limited use when considering service conditions or compositions different from those in the experiments. In order to provide a more general model for creep, the mechanisms that give creep strength have to be identified and fundamentally described. By combining tools for thermodynamic modelling and modern dislocation theory the microstructure evolution during creep can be predicted and used as input in creep rate modelling. The model for creep has been utilised to clarify the influence of aluminium on creep strength as a part of the European COST538 action. The results show how AlN is formed at the expense of MX carbonitrides. The role of heat treatment during welding has been analysed. It has been shown that particles start to dissolve already at 800ºC, which is believed to be the main cause of Type IV cracking in commercial alloys. The creep strength of these steels relies on minor additions of alloying elements. Precipitates such as M23C6 carbides and MX carbonitrides give rise to the main strengthening, and remaining elements produce solid solution hardening. Particle growth, coarsening and dissolution have been evaluated. By considering dislocation climb it is possible to determine particle strengthening at high temperatures and long-term service. Transient creep is predicted by considering different types of dislocations. Through the generation and recovery of dislocation densities an increase in work hardening during primary creep is achieved. The role of substructure is included through the composite model. Cavity nucleation and growth are analysed in order to explain the intergranular fracture and to estimate the ductility.

Ämnesord

TEKNIK OCH TEKNOLOGIER  -- Materialteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Materials Engineering (hsv//eng)

Nyckelord

creep rate modelling
particle hardening
microstructure evolution
dislocation climb
ferritic steels
Materials science
Teknisk materialvetenskap

Publikations- och innehållstyp

vet (ämneskategori)
dok (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy