SwePub
Sök i LIBRIS databas

  Utökad sökning

id:"swepub:oai:DiVA.org:kth-13369"
 

Sökning: id:"swepub:oai:DiVA.org:kth-13369" > Activity-dependent ...

Activity-dependent modulation of adaptation produces a constant burst proportion in a model of the lamprey spinal locomotor generator.

Ullström, M (författare)
Hellgren Kotaleski, Jeanette (författare)
Karolinska Institutet,KTH,Numerisk analys och datalogi, NADA
Tegnér, Jon (författare)
Karolinska Institutet,KTH,Numerisk analys och datalogi, NADA
visa fler...
Aurell, Erik (författare)
KTH,Numerisk analys och datalogi, NADA
Grillner, Sten (författare)
Karolinska Institutet
Lansner, Anders (författare)
KTH,Numerisk analys och datalogi, NADA
visa färre...
 (creator_code:org_t)
Springer Science and Business Media LLC, 1998
1998
Engelska.
Ingår i: Biological Cybernetics. - : Springer Science and Business Media LLC. - 0340-1200 .- 1432-0770. ; 79:1, s. 1-14
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • The neuronal network underlying lamprey swimming has stimulated extensive modelling on different levels of abstraction. The lamprey swims with a burst frequency ranging from 0.3 to 8-10 Hz with a rostrocaudal lag between bursts in each segment along the spinal cord. The swimming motor pattern is characterized by a burst proportion that is independent of burst frequency and lasts around 30%-40% of the cycle duration. This also applies in preparations in which the reciprocal inhibition in the spinal cord between the left and right side is blocked. A network of coupled excitatory neurons producing hemisegmental oscillations may form the basis of the lamprey central pattern generator (CPG). Here we explored how such networks, in principle, could produce a large frequency range with a constant burst proportion. The computer simulations of the lamprey CPG use simplified, graded output units that could represent populations of neurons and that exhibit adaptation. We investigated the effect of an active modulation of the degree of adaptation of the CPG units to accomplish a constant burst proportion over the whole frequency range when, in addition, each hemisegment is assumed to be self-oscillatory. The degree of adaptation is increased with the degree of stimulation of the network. This will make the bursts terminate earlier at higher burst rates, allowing for a constant burst proportion. Without modulated adaptation the network operates in a limited range of swimming frequencies due to a progressive increase of burst duration with increasing background stimulation. By introducing a modulation of the adaptation, a broad burst frequency range can be produced. The reciprocal inhibition is thus not the primary burst terminating factor, as in many CPG models, and it is mainly responsible for producing alternation between the left and right sides. The results are compared with the Morris-Lecar oscillator model with parameters set to produce a type A and type B oscillator, in which the burst durations stay constant or increase, respectively, when the background stimulation is increased. Here as well, burst duration can be controlled by modulation of the slow variable in a similar way as above. When oscillatory hemisegmental networks are coupled together in a chain a phase lag is produced. The production of a phase lag in chains of such oscillators is compared with chains of Morris-Lecar relaxation oscillators. Models relating to the intact versus isolated spinal cord preparation are discussed, as well as the role of descending inhibition.

Nyckelord

adaptation
animal
article
biological model
cybernetics
in vitro study
lamprey
locomotion
nerve cell network
oscillometry
physiology
spinal cord
swimming
TECHNOLOGY
TEKNIKVETENSKAP

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy