SwePub
Sök i LIBRIS databas

  Utökad sökning

id:"swepub:oai:DiVA.org:kth-187801"
 

Sökning: id:"swepub:oai:DiVA.org:kth-187801" > Large Deformations ...

Large Deformations of a Soft Porous Material

MacMinn, Christopher W. (författare)
Dufresne, Eric R. (författare)
Wettlaufer, John S. (författare)
Stockholms universitet,KTH,Nordic Institute for Theoretical Physics NORDITA,Nordiska institutet för teoretisk fysik (Nordita),Yale University, USA; University of Oxford, United Kingdom
 (creator_code:org_t)
American Physical Society, 2016
2016
Engelska.
Ingår i: Physical Review Applied. - : American Physical Society. - 2331-7019. ; 5:4
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • Compressing a porous material will decrease the volume of the pore space, driving fluid out. Similarly, injecting fluid into a porous material can expand the pore space, distorting the solid skeleton. This poromechanical coupling has applications ranging from cell and tissue mechanics to geomechanics and hydrogeology. The classical theory of linear poroelasticity captures this coupling by combining Darcy's law with Terzaghi's effective stress and linear elasticity in a linearized kinematic framework. Linear poroelasticity is a good model for very small deformations, but it becomes increasingly inappropriate for moderate to large deformations, which are common in the context of phenomena such as swelling and damage, and for soft materials such as gels and tissues. The well-known theory of large-deformation poroelasticity combines Darcy's law with Terzaghi's effective stress and nonlinear elasticity in a rigorous kinematic framework. This theory has been used extensively in biomechanics to model large elastic deformations in soft tissues and in geomechanics to model large elastoplastic deformations in soils. Here, we first provide an overview and discussion of this theory with an emphasis on the physics of poromechanical coupling. We present the large-deformation theory in an Eulerian framework to minimize the mathematical complexity, and we show how this nonlinear theory simplifies to linear poroelasticity under the assumption of small strain. We then compare the predictions of linear poroelasticity with those of large-deformation poroelasticity in the context of two uniaxial model problems: fluid outflow driven by an applied mechanical load (the consolidation problem) and compression driven by a steady fluid throughflow. We explore the steady and dynamical errors associated with the linear model in both situations, as well as the impact of introducing a deformation-dependent permeability. We show that the error in linear poroelasticity is due primarily to kinematic nonlinearity and that this error (i) plays a surprisingly important role in the dynamics of the deformation and (ii) is amplified by nonlinear constitutive behavior, such as deformation-dependent permeability.

Ämnesord

NATURVETENSKAP  -- Fysik (hsv//swe)
NATURAL SCIENCES  -- Physical Sciences (hsv//eng)

Nyckelord

Hydrated Connective Tissues
Flow Induced Deformation
Articular-Cartilage
Finite Deformation
Mathematical-Model
Elastoplastic Consolidation
Moderate Deformations
General-Approach
Balance Laws
Fluid-Flow

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy