SwePub
Sök i LIBRIS databas

  Utökad sökning

id:"swepub:oai:DiVA.org:kth-194256"
 

Sökning: id:"swepub:oai:DiVA.org:kth-194256" > Nanoparticle growth...

Nanoparticle growth by collection of ions : orbital motion limited theory and collision-enhanced collection

Pilch, Iris (författare)
Linköpings universitet,Tunnfilmsfysik,Tekniska fakulteten
Caillault, L. (författare)
University of Paris 11, France
Minea, T. (författare)
University of Paris 11, France
visa fler...
Helmersson, Ulf (författare)
Linköpings universitet,Plasma och ytbeläggningsfysik,Tekniska fakulteten
Tal, Alexey (författare)
Linköpings universitet,Teoretisk Fysik,Tekniska fakulteten,National University of Science and Technology MISIS, Russia
Abrikosov, Igor (författare)
Linköpings universitet,Teoretisk Fysik,Tekniska fakulteten,National University of Science and Technology MISIS, Russia
Münger, Peter (författare)
Linköpings universitet,Teoretisk Fysik,Tekniska fakulteten
Brenning, Nils (författare)
Linköpings universitet,KTH,Rymd- och plasmafysik,Linköping University, Sweden,Plasma och ytbeläggningsfysik,Tekniska fakulteten,KTH Royal Institute Technology, Sweden
visa färre...
 (creator_code:org_t)
2016-09-08
2016
Engelska.
Ingår i: Journal of Physics D. - : Institute of Physics Publishing (IOPP). - 0022-3727 .- 1361-6463. ; 49:39
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • The growth of nanoparticles in plasma is modeled for situations where the growth is mainly due to the collection of ions of the growth material. The model is based on the classical orbit motion limited (OML) theory with the addition of a collision-enhanced collection (CEC) of ions. The limits for this type of model are assessed with respect to three processes that are not included: evaporation of the growth material, electron field emission, and thermionic emission of electrons. It is found that both evaporation and thermionic emission can be disregarded below a temperature that depends on the nanoparticle material and on the plasma parameters; for copper in our high-density plasma this limit is about 1200 K. Electron field emission can be disregarded above a critical nanoparticle radius, in our case around 1.4 nm. The model is benchmarked, with good agreement, to the growth of copper nanoparticles from a radius of 5 nm-20 nm in a pulsed power hollow cathode discharge. Ion collection by collisions contributes with approximately 10% of the total current to particle growth, in spite of the fact that the collision mean free path is four orders of magnitude longer than the nanoparticle radius.

Ämnesord

NATURVETENSKAP  -- Fysik (hsv//swe)
NATURAL SCIENCES  -- Physical Sciences (hsv//eng)
NATURVETENSKAP  -- Fysik -- Fusion, plasma och rymdfysik (hsv//swe)
NATURAL SCIENCES  -- Physical Sciences -- Fusion, Plasma and Space Physics (hsv//eng)

Nyckelord

nanoparticle synthesis
pulsed plasma
complex plasmas

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy